

February 28, 2011

Mr. Phil Cole
Bureau of Case Management
New Jersey Department of Environmental Protection
401 East State Street
PO Box 28
Trenton, New Jersey 08625-0028

RE: Vapor Intrusion/ Remedial Investigation/ Receptor Evaluation
Hess Corporation – Port Reading Refinery
750 Cliff Road
Woodbridge, Middlesex County, New Jersey
PI 006148

Dear Mr. Cole:

The Hess Corporation – Port Reading Refinery (HC-PR) submits with this letter the Receptor Evaluation for the Port Reading Refinery. This report presents the completed RE Form and all associated documents.

Should you have any questions or comments regarding the information submitted in this report, please do not hesitate to contact me at 908-757-1900. Should you have any questions or comments relating to the project, please contact Steve Freeman of Hess Corporation at 713-609-5955 or Howard S. Goldman of Hess Corporation at 732-750-7735.

Sincerely, **EnviroTrac, Ltd.**

William Groeling Senior Project Manager NJDEP Certification #0022589

cc: John M. Mitch – Clerk, Woodbridge Township
Phillip Bujalski – Health Department of Woodbridge Township
Mr. Barry Tornick – US EPA Region II
Howard Goldman – Hess Corporation (electronic)
Steve Freeman – Hess Corporation (electronic)
Project File

New Jersey Department of Environmental ProtectionSite Remediation Program

RECEPTOR EVALUATION FORM

☐ Non-LSRP (Existing Cases) ☐ LSRP ☐ Subsurface Evaluator

Date Stamp

<u> </u>	(For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name:	
List all AKAs:	
Street Address:	
Municipality: (Towr	nship, Borough or City)
County: Zip Co	ode:
Mailing Address if different than street address:	
Program Interest (PI) Number(s): Cas	e Tracking Number(s):
The purpose of this form is to document the existence of receptors an unless an unrestricted remedial action is completed before the due da initial or interim Receptor Evaluation the Department acknowledges the complete. The Receptor Evaluation should be completed in accordant Requirements for Site Remediation and is an ongoing process as the Evaluation should be submitted within the Mandatory Timeframes. ☐ Initial Submission ☐ Interim Submission ☐ No Change (if no change, indicate last RE date and skip to state the submission of the submission	ate of the initial Receptor Evaluation. At the time of the nat the remedial investigation may not be fully ce with requirements and timeframes in the Technical extent of contamination is defined. The Receptor
SECTION B. ON SITE AND SURROUNDING PROPERTY USE	
None of the following	On-site Off-site
3. Planned future site uses and offsite use within 200 ft of site bound ☐ Industrial ☐ Residential ☐ Com ☐ School or child care ☐ Government ☐ Park ☐ Vacant ☐ Other	
Provide a map depicting the location of the proposed changes in	land use.
☐ Initial Submission ☐ Interim Submission ☐ No Change (if no change, indicate last RE date and skip to	Section G:)

SE	CTION C. DESCRIPTION OF CONTAMINATION	
1.	Identify if any of the following exist at the site (check all that apply):	
	☐ Free product [N.J.A.C. 7:26E-1.8] ☐ Residual product [N.J.A.C. 7:26E-1.8]	
	Other high concentration source materials not identified above (e.g., buried drums, containers,	
	unsecured friable asbestos) Explain	
2.	If this evaluation is submitted with a technical document that includes this information, proceed to Section D. O	thenvise
۷.	attach a brief summary of all currently available data and information to be included in the site investigation or reinvestigation report.	
	☐ Initial Submission ☐ Interim Submission ☐ No Change (if no change, indicate last RE date and skip to Section G:)	
SE	CTION D. GROUND WATER USE	
1.	The requirement for ground water sampling has been triggered. If "No," proceed to Section F	☐ No
2.	Ground water is contaminated above the Ground Water Remediation Standards [N.J.A.C.7:9C]	☐ No
	Or Awaiting laboratory data with the expected due date:	
	If "Yes," provide the date that the laboratory data were available and contamination exists above the Ground Wa Remediation Standards. Date	ater
	If "No," or awaiting laboratory data proceed to Section F.	
3.	Identify if any of the following conditions exist based on the well search [N.J.A.C.7:26E-1.17(a)] (check all that a Potable wells located within 1000 feet from the downgradient edge of the currently known extent of contain Potable well located 250 feet upgradient or 500 feet side gradient of the currently known extent of contami Ground water contamination is located within a wellhead protection area Tier 1 or Tier 2 (WHPA). Tier: Identify if Tier 1 or Tier 2	nination.
4.	Complete and attach the Well Search spreadsheet.	
5.	Potable use wells have been identified in the well search and the area has been canvassed for additional ground water use (potable and irrigation wells, etc.).	□No
6.	Potable wells and non-potable use wells were identified and \square potable well and /or \square non-potable use well sampling has been conducted.	□No
7.	Contamination identified above Ground Water Remediation Standards but not suspected to be from the site (if "Yes," provide justification)	□No
8.	Potable wells were sampled and results were above State or Federal Drinking Water Standard	☐ No
	Date Or Awaiting laboratory data with the expected due date	
	If "Yes" to #8 for potable well contamination not attributable to background follow the IEC Guidance Docat http://www.nj.gov/dep/srp/guidance/srra/iec_guidance_draft.pdf.	cument
	IEC was abated	☐ No
	Date NJDEP Case Manager	
9.	Receptors abated as part of mitigation (provide a brief narrative description)	☐ No
10.	Non-potable use wells were sampled and results were above GWQS.	
	Date Or Awaiting laboratory data and the expected due date:	
	☐ Initial Submission ☐ Interim Submission	
	☐ No Change (if no change, indicate last RE date and skip to Section G:)	
SE	CTION E. VAPOR INTRUSION (VI)	
1.	Contaminants present in ground water exceed vapor intrusion ground water screening levels (see NJDEP Vapor Intrusion Guidance) that trigger a VI evaluation	□No

	Or Awaiting laboratory data and the expected due date:						
	Provide the date that the laboratory data was available and confirmed contamination above the Vapor Intrusion trigger levels.						
	If "No," or awaiting laboratory data, proceed to Section F.						
2.	Identify and locate on scaled map any structures/sensitive populations that exist within the following distances from ground water contamination with concentrations above the Ground Water Screening Levels for Vapor Intrusion or specific threats (check all that apply):						
	 ☐ 30 feet of dissolved petroleum hydrocar ☐ 100 feet of any free product or any non- ☐ No structures exist within the specified of 	petroleum dissolved volatile organic ground water contamination.					
	☐ Unsaturated zone contamination	☐ Methanogenic conditions					
	☐ Landfills on or adjacent to site	☐ Elevated soil gas or indoor vapors					
	☐ Elemental mercury ☐ Other	\square Basement or sump contains contaminated ground water or p	oroduct				
3.	A VI evaluation has been conducted of the s	tructures to address threats identified 🗆 Yes	☐ No				
4.	The vapor intrusion pathway is not a concern	n at or adjacent to the site (if "yes", attach justification) 🗌 Yes	☐ No				
5.	Contamination identified but not suspected to	be from the site (if "Yes," attach justification)	☐ No				
6.		Its were above the Department's proposed vapor ☐ Yes	□No				
	Or Awaiting laboratory data						
	Provide the date that the laboratory data was Rapid Action Levels.	s received and detected contamination above the proposed vapor in	trusion				
		contamination follow the IEC Guidance Document at					
	http://www.nj.gov/dep/srp/guidance/srra/i	ec_guidance_draft.pdf.					
	The IEC receptor engineering system respor	ec_guidance_draft.pdf. nse for receptor control was implemented for all Yes	□No				
	The IEC receptor engineering system respor	nse for receptor control was implemented for all	□ No				
7.	The IEC receptor engineering system respondentified structures Date NJDEP Case Notes Indoor air sampling was conducted and resu	nse for receptor control was implemented for all	□ No				
7.	The IEC receptor engineering system respondentified structures Date NJDEP Case Notes Indoor air sampling was conducted and resu	nse for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening					
7.	The IEC receptor engineering system responding identified structures	Anager					
7.	The IEC receptor engineering system respondentified structures Date NJDEP Case Note that the proposed supporting the proposed vapor in the	Anager					
7.	The IEC receptor engineering system respondentified structures Date NJDEP Case Note that the proposed vapor is completed (date)	Anager Its were above the Department's Indoor Air Screening Intrusion Rapid Action Levels	□ No				
7.	The IEC receptor engineering system respondentified structures Date NJDEP Case Note that the proposed supporting the proposed vapor in the	Anager	□ No				
7.	The IEC receptor engineering system respondentified structures	Anager Yes Manager	□ No				
	The IEC receptor engineering system respondentified structures	rise for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening intrusion Rapid Action Levels Yes cation of the exceedances of the data has been Yes has been submitted (date) Yes reen submitted (date) Yes mpleted and stepping out as part of the site " attach justification) Yes	□ No □ No □ No □ No				
	The IEC receptor engineering system respondentified structures	rise for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening intrusion Rapid Action Levels Yes cation of the exceedances of the data has been Yes has been submitted (date) Yes reen submitted (date) Yes mpleted and stepping out as part of the site " attach justification) Yes	□ No □ No □ No □ No				
8.	The IEC receptor engineering system respondentified structures	rese for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening	□ No □ No □ No □ No				
8.	The IEC receptor engineering system respondentified structures	rese for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening	□ No □ No □ No □ No				
8.	The IEC receptor engineering system respondentified structures	rise for receptor control was implemented for all Yes Manager Its were above the Department's Indoor Air Screening Intrusion Rapid Action Levels	□ No □ No □ No □ No				
8.	The IEC receptor engineering system responsidentified structures	rise for receptor control was implemented for all Yes	No				

Free product or residual product is located within 100 feet from an ecological receptor						
☐ Initial Submission ☐ Interim Submission ☐ No Change (if no change, indicate last RE date and ski	p to Section G:)					
SECTION G. PERSON RESPONSIBLE FOR CONDUCTING TH	HE REMEDIATION INFORMATION AND CERTIFICATION					
Full Legal Name of the Person Responsible for Conducting the R	Remediation:					
Representative First Name:	Representative Last Name:					
Title:						
Phone Number: Ext:	Fax:					
Mailing Address:						
City/Town:						
Email Address:						
This certification shall be signed by the person responsible for coin accordance with Administrative Requirements for the Remedia						
I certify under penalty of law that I have personally examined and am familiar with the information submitted herein, including all attached documents, and that based on my inquiry of those individuals immediately responsible for obtaining the information, to the best of my knowledge, I believe that the submitted information is true, accurate and complete. I am aware that there are significant civil penalties for knowingly submitting false, inaccurate or incomplete information and that I am committing a crime of the fourth degree if I make a written false statement which I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.						
Signature:	Date:					
Name/Title:	No Changes Since Last Submittal					

SECTION H. NON-LSRP SITE REMEDIATION PROFESSIONAL STATEMENT					
First Name:	Last Name:				
Phone Number:	Ext:	Fax:			
Mailing Address:					
City/Town:	State:	Zip Code:			
Email Address:					
I believe that the information contained herein, and includi	ing all attached docume	nts, is true, accurate and complete.			
Signature:		Date:			
Name/Title:		No Changes Since Last Submittal			
Company Name:		_			

Submit this form to the assigned case manager, municipal clerk and designate health department. If there is no assigned case manager, submit this form to:

Bureau of Case Assignment & Initial Notice New Jersey Department of Environmental Protection Site Remediation Program 401 East State Street, PO Box 434 Trenton, NJ 08625 Receptor Evaluation - Additional Information Hess Corporation – Port Reading Refinery 750 Cliff Road Woodbridge, NJ

Section A – Site Name and Location

An updated list of Case Numbers is presented as **Table 1**.

Section B - Onsite and Surrounding Property Use

Pursuant to N.J.A.C. 7:26E-1.7, EnviroTrac is documenting the variation from the technical requirement N.J.A.C. 7:26E-1.16. The Hess Port Reading Refinery is a large oil refinery and petroleum storage terminal Land use within 200 feet of the property boundary includes residential properties. However, the closest residence is over 800 feet from known petroleum impact. In addition, all residences are upgradient of known petroleum impact. Multiple monitoring wells are located between the known impact and the residences. These monitoring wells are sampled annually and there are no contaminants detected above the Groundwater Quality Standards in these wells.

Section C – Description of Contamination

Chemical constituents associated with petroleum refining including benzene, toluene, ethylbenzene, xylenes, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and naphthalene have been detected in the groundwater at the Site. Since detection of the chemical constituents, Hess has been completing investigative and remedial activities in accordance with the requirements of the NJDEP. Currently Hess is completing groundwater monitoring, sampling and reporting at this Site. A table presenting historical groundwater sampling results for annually sampled monitoring wells is presented as **Table 2**. A Site Location Map is presented as **Figure 1**. A Site Plan depicting the location of the monitoring wells is presented as **Figure 2**.

Please note that chemical constituents in the soil and/or groundwater are not suspected to have migrated beyond the boundaries of the Site.

Section D - Groundwater Use

No Domestic, Public Supply, Non-public, Industrial, or Irrigation wells were identified. The Well Search Spreadsheet and associated Well Search are provided in **Appendix A**.

Section E – Vapor Intrusion

An indoor air investigation was completed at the Hess Port Reading Administration Building on November 10, 2010. All results were below the NJDEP Air Screening Levels. A VI Sampling Form and Spreadsheet, Full Laboratory Deliverables Form and associated Laboratory data, and the EDD conversion table is presented in **Appendix B**. In addition, the indoor air results have been submitted to the Department of Health and Senior Services. A figure showing the air sampling locations is presented as **Figure 3**.

Section F – Ecological Receptors

Surface water and sediment sampling has been proposed for areas of Smith Creek, located to the South of the facility. A figure showing the proposed locations has been presented as **Figure 4**.

	Case Inventory Document							
I. Area(s) of Concern, Receptor and Emergency Response Tracking	Impacted Media	Contaminants of Exposure Route		Receptors				Current Status/Outcome
•				Existing	Potential			
AOC 1 - North Landfarm	Groundwater	VOCs, SVOCs, and Metals	Groundwater	Groundwater	None	June 1988 - HC-PR submitted a Closure and Post Closure Plan to the NJDEP. The North Landfarm was formerly used to treat two listed hazardous waste streams, API Separator Sludge (K051) and Leaded Tank Bottoms (K052). The total volume of waste applied to the North Landfarm from 1978 until October 24, 1985 is estimated at 21 tons. The volume of hazardous waste applied to the Landfarm during this period is estimated at 15 tons. Non-hazardous biomass was applied to the Landfarm until about 1988. The Landfarm's monitoring wells are sampled on a quarterly basis.		
AOC 2 - South Landfarm	Groundwater	VOCs, SVOCs, and Metals	Groundwater	Groundwater	None	June 1988 - HC-PR submitted a Closure and Post Closure Plan to the NJDEP. The South Landfarm was constructed in 1975 above a former surface impoundment that received oily wastewaters. The South Landfarm was formerly used to treat two listed hazardous waste streams, API Separator Sludge (K051) and		
						Leaded Tank Bottoms (K052). The Landfarm's monitoring wells are sampled on a quarterly basis. December 2007 - HC-PR requested delay of closure of the landfarm. The No. 1 Landfarm was constructed		
AOC 3 - No.1 Landfarm	Groundwater	VOCs, SVOCs, and Metals	Groundwater	Groundwater	None	in 1985 from dredged sediments from the Authur Kill. The landfarm has was used to treat API Separator Sludge, heat exchanger bundle cleaning sludge, leaded tank bottoms, and TEL bottoms. The landfarm has not been used since 2004. The Landfarm's monitoring wells are sampled on a quarterly basis.		
AOC 4 - Dredge Spoils Area	None	VOCs	Soil	None	Soil	October 2010 - The Dredge Spoils Area is located upgradient of AOC 3 No. 1 Landfarm. These spoils are believed to be dredged materials from the Arthur Kill shipping channel. Historical groundwater monitoring of the landfarm indicated low levels of benzene and chlorobenzene within monitoring well L1-2. Between September 15 and October 6, 2010 HC-PR conducted a soil and groundwater investigation to identify the potential source and delineate the benzene and chlorobenzene previously detected in L1-2. A total of eight groundwater and eight soil samples were collected. The results from this investigation were submitted in the Fourth Quarter 2010 Status Report.		
AOC 5 - Aeration Basin	Soil and Groundwater	VOCs	Soil and Groundwater	Soil and Groundwater	None	February 1987 - The Aeration Basin Area is comprised of three, synthetically lined, adjoining basins. The aeration basins are located in the southeast corner of the facility, immediately southwest of the refinery's wastewater treatment system. The total surface area of the three basins is approximately 4.1 acres, including the surrounding dike areas. HC-PR submitted an Aeration Basin Closure Plan to the NJDEP in February 1987. The closure plan is based on filling the basins with partially dewatered catalyst fines. Once the basins have been filled, they can be capped with one foot of soil, graded to 1%, and seeded for grass to prevent erosion. Currently, HC-PR continues to close the aeration basin in accordance with the 1987 Aeration Basin Closure Plan. Covered soil from Basin #2 is scheduled for removal First Quarter of 2011 so that additional catalyst fines can be added to the basin. Basin #3 has been filled, capped, and seeded. HC-PR will continue to provide updates within upcoming quarterly status reports.		
AOC 6 - Waste Oil UST Area	Soil and Groundwater	LNAPL, VOCs, and SVOCs	Soil and Groundwater	Soil and Groundwater	None	1986 - HC-PR removed and excavated one (1) oily waste UST from this area of the facility. The size of the UST could not be confirmed within the Comprehensive Management Plan (CMP). This UST was utilized as temporary storage of recovered water and any potential hydrocarbons carried with the water from the adjacent AST operations. In October 2009, HC-PR installed five (5) temporary wells (TF-TW-1 through TF-TW-5) to a depth of approximately 10 feet below grade via the Geoprobe direct push method. These temporary wells were installed to delineate LNAPL previously detected within TF-2. Based on these results, additional groundwater delineation was conducted during the second phase of the facility groundwater delineation program. The results from this investigation were submitted during the Fourth Quarter 2010 Status Report.		

11/4/09 Version 1.0 Page 1 of 3

Case Inventory Document						
I. Area(s) of Concern, Receptor and Emergency Response Tracking	Impacted Media	Contaminants of Concern	Exposure Route		ptors	Current Status/Outcome
				Existing	Potential	N. 404 110 DD
AOC 7 - Colonial Pipeline	Groundwater	LNAPL, VOCs, and SVOCs	Groundwater	Groundwater	None	May 1991 - HC-PR reported a release from the Colonial Pipeline to the NJDEP. In September 1995, a total of nine (9) monitoring wells (PL-1 through PL-9) were installed within this AOC. In October 2009, HC-PR installed nineteen (19) temporary wells (PL-TW-1 through PL-TW-19) to a depth of approximately 10 feet below grade via Geoprobe direct push method. These temporary wells were installed to delineate LNAPL previously detected within PL-2, PL-3R, and PL-5. Based on these results, additional groundwater delineation was conducted during the second phase of the facility groundwater delineation program. The results from this investigation were submitted during the Fourth Quarter 2010 Status Report.
AOC 8 - Proposed Container Storage Area	Soil	VOCs, Metals, and PCBs	Soil	Soil	Groundwater	1992 - Based on an anticipated increase in the quantity of hazardous waste potentially generated at the refinery, HC-PR decided to expand an existing hazardous waste storage facility. In support of its initial intention to expand the existing waste storage facility, HC-PR notified the NJDEP in August 1992 of plans to conduct pre-construction soil sampling of the proposed expanded hazardous waste storage area. On September 11, 1992, a total of seven pre-construction soil samples were collected from AOC 8. The results indicated that cadmium, arochlor, benzene, ethylbenzene, and total xylenes exceeded the NJDEP RDCSCC or the IGWSCC, in one or more soil samples. Between September 15 and October 6, 2010, HC-PR installed three temporary wells in the area of AOC-8. The results of this investigation were submitted in the Fourth Quarter 2010 Status Report.
AOC 9 - Alkylation Unit	Soil	TPH-DRO and SVOCs	Soil	Soil	Groundwater	October 1992 - The Alkylation Unit sewer system was being cleaned as part of regularly scheduled maintenance program. The maintenance program included an internal inspection of the sewer system using a remote camera. The video inspection showed that the piping was deteriorating near catch basins designated as CB-4, CB-5, and CB-6. The NJDEP was notified of a potential catch basin leak and NJDEP Case # 92-10-28-1052-59 was assigned. Soil was excavated from the area and the catch basins and piping were replaced. In May 2007, a leaking drain pipe was identified within the Alkylation Unit area. The drain pipe was utilized to drain sulfuric acid in the Alkylation Unit. Upon identifying the release, HC-PR repaired the drain pipe and excavated approximately 6 cubic yards of soil. The NJDEP was notified and NJDEP Case # 07-05-11-1330-47 was assigned. Between September 15 and October 6, 2010, HC-PR installed five temporary wells in the area of AOC-9. The results of this investigation were submitted in the Fourth Quarter 2010 Status Report.
AOC 10 - Truck Loading Rack	Groundwater	LNAPL, VOCs, and SVOCs	Groundwater	Groundwater	None	November 1993 - Four ground water monitoring wells were installed (TR-1 through TR-4, formerly known as MW-1 through MW-4). Historically, product has been observed within monitoring well TR-2. HC-PR has been conducting monthly gauging and monthly pumping from TR-2 and has been providing recovery information within the quarterly status reports. In October 2009, HC-PR installed seventeen (17) temporary wells (TR-TW-1 through TR-TW-17). These temporary wells were installed to delineate LNAPL previously detected within TR-2. Based on these results, two (2) additional monitoring wells (TR-5 and TR-6) were installed on October 7, 2010.
AOC 11 - Administration Building	Soil and Groundwater	VOCs, cVOCs, SVOCs, and Metals	Soil and Groundwater	Soil and Groundwater	None	September 1990 - Four underground storage tanks used to store heating oil were removed from the refinery property. Three of these USTs were located adjacent to the Administration Building. Following the removal of the USTs, petroleum stained soil and petroleum odors were observed in two of the three excavations. The NJDEP was notified and the case was assigned number 90-08-29-1617. In response, groundwater monitoring wells were installed around the Administration Building in 1991. In October 2009, HC-PR installed ten (10) temporary wells (AD-TW-1 through AD-TW-10). Based on these results, additional groundwater delineation was conducted during the second phase of the facility groundwater delineation program. The results from this investigation will be submitted during the Fourth Quarter 2010 Status Report. On Novemember 10-11, 2010, an indoor air investigation was performed. All air samples were below NJDEP standard.
AOC 12 - Smith Creek	None	VOCs, SVOCs, and Metals	Surface Water	None	Surface Water and Sediments	October 30, 1969 - A tank failure occurred at the facility and approximately eight million gallons of crude oil was released. While the majority of the volume was contained and recovered within the bermed area, a seep in the berm allowed an undetermined amount of oil to flow into the retention basin and subsequently into Smith Creek. Crude oil was identified within Smith Creek before the creek was bermed and remediated. HC-PR proposes to collect twelve (12) surface water and twenty-four (24) sediment samples from Smith Creek and the detention pond.

11/4/09 Version 1.0 Page 2 of 3

Case Inventory Document						
I. Area(s) of Concern, Receptor and Emergency Response Tracking	Impacted Media	Contaminants of Concern	Exposure Route	Receptors Existing Potential		Current Status/Outcome
AOC 13 - Former Oily Water Lagoon	Groundwater	VOCs, SVOCs, and Metals	Groundwater	Groundwater	None	Prior to 1974 - The Former Oily Water Lagoon was used to treat wastewater and oily waste. The South Landfarm was constructed in the location of the Former Oily Water Lagoon. All status details are provided in AOC 2 - South Landfarm.
AOC 14 - TM Monitoring Wells	Groundwater	LNAPL, VOCs, and SVOCs	Groundwater	Groundwater	None	October 2009 - HC-PR installed fourteen (14) temporary wells (TM-TW-1 through TM-TW-14). Current and historical storage within this AOC includes MTBE, TAME, Slurry Oil, Light Cycle Oil, Raffinate, Methanol, Process Water, Gasoline, and Sour Water. Based on these results, additional groundwater delineation was conducted during the second phase of the facility groundwater delineation program. The results from this investigation were submitted during the Fourth Quarter 2010 Status Report.
AOC 15 - Former UST Area	Groundwater	LNAPL, VOCs, and SVOCs	Groundwater	Groundwater	None	A total of five (5) USTs (0004, 0008, 0009, 0010, and 0011) were removed from this AOC. Former UST 0004 was a 550-gallon #6 fuel oil UST located immediately northwest of AST 1209. Former UST 0008 was a 1,000-gallon #6 fuel oil UST located north of AST 1211. Former UST 0009 was a 550-gallon #2 heating oil UST located north of AST 1211. Former UST 0010 and 0011 were both 550-gallon #4 heating oil USTs located north of AST 1219. Between September 15 and October 6, 2010, HC-PR conducted a soil and groundwater investigation of these areas during the second phase of delineation activities. An update was provided within the Fourth Quarter 2010 Status Report.
AOC 16 - Railcar and Terminal Loading Areas	Groundwater	VOCs, SVOCs, and Metals	Groundwater	Groundwater	None	AOC 16 is separated into two distinctive areas. AOC 16A is located on the western side of the property between the refinery and terminal operations section of the facility. AOC 16B is located on the eastern side of the facility, in the marine terminal loading area. All active piping associated with the railcar is aboveground. Current and historical storage in the ASTs around AOC 16A and 16B include gasoline, gasoline blend stock, MTBE, diesel fuel, No. 2 fuel oil, jet fuel, methanol, sulfuric acid, sodium hydroxide, and monoethanolamine. All stormwater is collected and transported to the waste water treatment system. There are two monitoring wells in the vicinity of AOC 16B (PER-7 and PER-8). Between September 15 and October 6, 2010 , HC-PR conducted a groundwater investigation of AOC 16A during the second phase of delineation activities. An update was provided within the Fourth Quarter 2010 Status Report.
AOC 17 - Coal Dock Loading Ara	None	VOCs, SVOCs, and Metals	Soil, Groundwater and Surface Water	None	Soil, Groundwater and Surface Water	The Coal Dock Area site is identified as Block 1095 Lot 10 in Woodbridge Township, Middlesex County, New Jersey, and is owned by Prologis, LLC. The site is part of a 108-acre irregular shaped parcel situated in an industrially developed waterfront area. The AOC includes railroads and undeveloped land. The property is bordered to the west and north by Middlesex Avenue and to the south by the Port Reading Refinery. Undeveloped land, mainly storing tractor-trailers, borders the northeast of the site. Immediately to the east of the property is Arthur Kill ship channel. HC-PR is currently conducting a Preliminary Assessment of this area to determine the need for a Site Investigation. The PA will be submitted during the First Quarter 2011.

11/4/09 Version 1.0 Page 3 of 3

New Jersey Department of Environmental ProtectionSite Remediation Program

LIGHT NON-AQUEOUS PHASE LIQUID (LNAPL) FREE PRODUCT REPORTING FORM

□ LSRP □ Subsurface Evaluator

Date Stamp (For Department use only)

This form is to be used to report to the Department the presence of Light Non-Aqueous Phase Liquid (LNAPL) free product and to document initial free product recovery efforts. (Note: Submittal of this form does not substitute for notifying the Department of a discharge pursuant to N.J.A.C. 7:26E-1.4.) In addition, this same form is used to accompany the report submittals that document actions taken for initial free product recovery efforts and for the interim remedial measure for LNAPL free product recovery following completion of a focused remedial investigation conducted to determine the extent of LNAPL free product.

SECTION A. SITE LOCATION	
Site Name:	
List all AKAs:	
Street Address:	
Municipality:	(Township, Borough or City)
County:	Zip Code:
Mailing Address if different than street address:	
Program Interest (PI) Number(s):	Case Tracking Number(s):
Date trigger compliance with Section 30 of Site Remediation Reform	m Act P.L.:
State Plane Coordinates for a central location at the site: Easting:	Northing:
Municipal Block(s) and Lot(s): Block #	
Block # Lot # Blo	
Block # Lot # Blo	ck# Lot#
Block # Lot # Blo	ck# Lot#
Block # Lot # Blo	ck# Lot#
SECTION B. NJDEP CASE MANAGER Do you have an assigned Case Manager?	
Type of Product (Check all that apply) ☐ Gasoline ☐ Diesel Fuel ☐ #2 Fuel Oil ☐ #4	erosene Unknown
List source(s) of product release (put unknown if source not ider Was an ongoing release discovered?	ntified) Yes
If "No," explain:	
Product Thickness:	
How was LNAPL Free Product discovered? In Monitoring Well In Excavation In Soil sample On Surface Water Seep Within a sum Other, explain:	· · · · · · · · · · · · · · · · · · ·

☐ Skimmers ☐ Single or Dual-Phase Vacuum Extraction ☐	Sorbent mater Ejector pumps Technically Im	practicable	
☐ Other, explain:			
List frequency of action: 2. LNAPL Free Product Recovery Interim Reme			
-			
Is the focused remedial investigation for LNAPL from the state of the			∐ NO
If "No," explain:			
Has a LNAPL free product recovery system or oth	•	•	☐ No
If "No," explain:			
Date installation complete for free product recover remedial investigation:		uivalent method following completion of the fo	cused
Note: Attach reports documenting all remedial in product delineation and recovery and plan	•		free
SECTION D. DEVIATION FROM REGULATIONS If the Licensed Site Remediation Professional has va remediation varied and the page(s) in the attached do			ich the
N.J.A.C. 7:26E-	Page		
N.J.A.C. 7:26E-			
N.J.A.C. 7:26E-			
SECTION E. PERSON RESPONSIBLE FOR CONDI	ICTING THE F	EMEDIATION INFORMATION AND CERTIF	ICATION
Full Legal Name of the Person Responsible for Cond		and and area	
Representative First Name:	•	· · · · · · · · · · · · · · · · · · ·	
T:41 a.		entative Last Name.	
		Fav:	
		Fax:	
Mailing Address:		7'n Oada	
City/Town:	State:	Zip Code:	
Email Address:			
This certification shall be signed by the person responding accordance with Administrative Requirements for the state of the second sec			
I certify under penalty of law that I have personally exincluding all attached documents, and that based on the information, to the best of my knowledge, I believ aware that there are significant civil penalties for known committing a crime of the fourth degree if I make aware that if I knowingly direct or authorize the violation	my inquiry of th e that the subm wingly submittir a written false s	ose individuals immediately responsible for ob hitted information is true, accurate and complet ng false, inaccurate or incomplete information of histatement which I do not believe to be true. I a	otaining te. I am and that I
Signature:	ſ	Date:	
Name/Title:		No Changes Since Last Submittal	

SECTION F. SUBSURFAC	E EVALUATOR US	T REPORT CERTIF	ICATION FORM	
Facility Name:				
		Ext:	Fax:	
Facility Street Address:				
Municipality:		(To	ownship, Borough or City)	
State:		Zip Code:		
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block		Lot #
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block	(#	Lot #
Block #	Lot #	Block		Lot #
Block #	Lot #	Block	(#	Lot #
Block #		Block		Lot #
	Lot #	·	(#	Lot #
·	Lot #			Lot #
Owner's (or Responsible Par	ty's) Name:			
Municipality:				
			Telephone	
Assigned Case Manager:				
In alide at Demant November			Number:	
Certification by the Subsu	rface Evaluator:			
I certify under penalty of law		nerformed under my i	oversight and I have revie	wed the report and all
attached documents, and the	e submitted informa	ation is true, accurate	and complete in accordar	nce with the requirements of
N.J.A.C. 7:14B and N.J.A.C. inaccurate or incomplete info			•	alties for submitting false,
,	•	•		
Firm Address:				Zin Codo:
				Zip Code:
Signature:				nce Last Submittal

Submit this form to the assigned case manager. If there is no assigned case manager, submit this form to:

Bureau of Case Assignment & Initial Notice New Jersey Department of Environmental Protection Site Remediation Program 401 East State Street, PO Box 434 Trenton, NJ 08625

• north =

●AD-1

DRAWN BY: B.S.

FIGURE #

HESS CORPORATION 750 CLIFF ROAD PORT READING, NEW JERSEY AOC 11 — ADMINISTRATION BUILDING AIR SAMPLING LOCATION MAP

REVISION DATE: 10/19/10

0 5 10

Sediment to be analyzed for TOC, PH, Particle Grain Size, TPHC, TCL/TAL+30

Surface Water to be Analyzed For TPHC and TCL/TAL+30

NOTES: 0 480 960 1,920 2,880 3,840 digital imagery provided by NJDEP (2007)

ALL SURFACE WATER SAMPLES TO BE ANALYZED FOR TPHC. ALL SEDIMENT SAMPLES TO BE ANALYZED FOR TOC/PH/PARTICLE GRAIN SIZE, AND TPHC.

FIGURE#

4

SMITH CREEK PROPOSED SAMPLING LOCATIONS

HESS CORPORATION 750 CLIFF ROAD PORT READING, NEW JERSEY DRAWN BY: B.S.

DATE: 7/27/10

Table 1
Case Number List
Hess - Port Reading Refinery
750 Cliff Road
Port Reading, NJ

Date of Discharge	NJDEP Case Number	Material/ Amount Released
4/25/1990	90-0425-0021	Approximately 840 - 1,680 gallons of gasoline
1/28/1991	91-1-28-1002-17	10 - 50 gallons of No. 2 fuel oil
9/25/1991	91-9-25-1014-00	Approximately 500 - 700 gallons of light oil
1/17/1992	92-1-17-1447-31	Approximately 1,260-gallons of catfeed
6/3/1992	92-6-3-1318-27	40 - 50 gallons of FCCU feedstock and No. 2 fuel oil
10/28/1992	92-10-28-1052-59	Undetermined
4/30/1993	93-4-30-1638-14	Approximately 84-gallons of No. 2 fuel oil
8/23/1993	93-08-23-0952-57	Approximately 20-gallons of light cycle oil
10/21/1993	39-10-21-1435-21	Approximately 255-gallons of gasoline
1/28/1994	94-01-28-0737-38	1,000-gallons of gasoline
4/26/1994	94-4-26-1139-52	Approximately 84-gallons of feedstock
10/3/1994	94-10-03-0819-31	25-gallons of recovered oil
3/7/1995	95-03-07-0055-00	Approximately 100-gallons of recovered oil
3/18/1995	95-03-18-1523-41	Approximately 50 - 100 gallons of slurry oil
10/10/1997	97-10-10-2359-11	Undetermined amount of catfeed oil

Table 1
Case Number List
Hess - Port Reading Refinery
750 Cliff Road
Port Reading, NJ

Date of Discharge	NJDEP Case Number	Material/ Amount Released
11/7/1997	97-11-7-1647-16	Approximately 50-gallons of gasoline
4/2/1998	98-04-02-0944-48	Approximately 100,000-gallons of wastewater
5/14/2000	00-05-14-2106-28	Approximately 50-gallons of petroleum impacted wastewater
5/28/2002	02-05-28-1640-14	Approximately 420-gallons of Algerian Resid (FCCU feedstock)
6/16/2003	03-06-16-1258-24	Approximately 210-gallons of gasoline
5/25/2006	06-05-25-1243-17	Approximately 1-gallon of diesel fuel
3/9/2007	07-03-09-1437-52	Approximately 26,000-gallons of gasoline
5/11/2007	07-05-11-1330-47	Unknown amount of sulfuric acid
11/1/2007	07-11-01-1625-32	Approximately 2-gallons of oil
8/14/2008	08-08-14-0949-36	Approximately 30-gallons of gasoline
5/19/2009	09-05-19-1218-35	Unknown
12/29/2009	09-12-29-1109-47	1-gallon of residual oil
4/25/2010	10-04-25-0820-32	Approximately 3-gallons
7/17/2010	10-07-17-0836-07	2-4 gallons of Algerian residual

			G	auging Da	ta						Metals				
Sample ID	Date	TOC Elevation (ft)	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	GW Elevation (ft)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt
NJDEP	GWQS	-	-	-	-	-	200	6	3	6000	NA	4	NA	70	100
AB-1	5/13/02	13.85	5.68	NP	NP	8.17	2,050	<5.0	7.7	<200	NA	NA	78,300	<10	NA
	09/01/09	13.85	5.25	NP	NP	8.6	11,700	<6.0	14.6	<200	<1.0	<3.0	22,300	11.9	<50
	09/08/10	13.85	8.51	NP	NP	5.34	43,500	<12	70.2	<400	2.8	<6.0	45,000	98.4	<100
AB-2	5/13/02	12.03	5.3	NP	NP	6.73	4,850	<5.0	8.4	<200	NA	NA	61,100	<10	NA
AB-2R	09/01/09	10.81	4.04	NP	NP	6.77	921	<6.0	14.3	226	<1.0	<3.0	25,200	<10	<50
	09/08/10	10.81	5.46	NP	NP	5.35	5,990	<6.0	5.9	<200	<1.0	<3.0	11,800	11.7	<50
AB-3	5/13/02	7.09	7.35	NP	NP	-0.26	7,490	<5.0	20.3	<200	NA	NA	43,300	16.9	NA
	09/01/09	7.09	3.63	NP	NP	3.46	561	8.5	32.3	216	<1.0	4.7	109,000	<10	<50
	09/08/10	7.09	5.77	NP	NP	1.32	303	<6.0	5.1	<200	<1.0	<3.0	122,000	<10	<50
AB-4	5/13/02 09/01/09	14.24 14.24	6.86 3.71	NP NP	NP NP	7.38 10.53	7,360 5,200	<5.0 <6.0	17 <3.0	597 <200	NA <1.0	NA <3.0	52,700 85,900	10.3	NA <50
AD-4	09/08/10 5/13/02	13.24	5.58	Well Dry	NP	7.66	NA 2,880	NA <5.0	NA 10.4	NA <200	NA NA	NA NA	NA 146,000	NA <10	NA NA
AB-5	09/01/09	13.24	4.72	NP	NP	8.52	283	<6.0	<3.0	<200	<1.0	<3.0	23,800	<10	<50
	09/08/10	13.24	8.03	NP	NP	5.21	1,300	<6.0	8.2	<200	<1.0	<3.0	34,800	<10	<50
AD-1	5/13/02	18.25	6	NP	NP	12.25	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	18.25	3.71	NP	NP	14.54	<200	<6.0	<3.0	<200	<1.0	<3.0	75,600	<10	<50
	09/10/10	18.25	5.79	NP	NP	12.46	504	<6.0	<3.0	<200	<1.0	<3.0	44,400	<10	<50
AD-2	5/13/02	18.95	6.85	NP	NP	12.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	18.95	6.75	NP	NP	12.2	445	<6.0	8.6	296	<1.0	<3.0	292,000	<10	<50
	09/07/10	18.95	7.76	NP	NP	11.19	<200	<6.0	6.8	259	<1.0	<3.0	322,000	<10	<50
AD-3	5/13/02	22	8.6	NP	NP	13.4	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	22	9.35	NP	NP	12.65	<200	<6.0	<3.0	<200	<1.0	<3.0	41,200	<10	<50
	09/08/10	22	10.4	NP	NP	11.6	2,410	<6.0	<3.0	<200	<1.0	<3.0	30,600	<10	<50
AD-4	5/13/02	17.55	7.14	NP	NP	10.41	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	17.55	5.03	NP	NP	12.52	394	<6.0	<3.0	<200	<1.0	<3.0	39,800	<10	<50
	09/07/10	17.55	6.97	NP	NP	10.58	772	<6.0	19.2	231	<1.0	<3.0	66,800	<10	<50
AD-5	5/13/02	17.73	6.71	NP	NP	11.02	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	17.73	5.18	NP	NP	12.55	1,530	<6.0	<3.0	263	<1.0	<3.0	103,000	<10	<50
	09/07/10	17.73	6.85	NP	NP	10.88	363	<6.0	<3.0	292	<1.0	<3.0	102,000	<10	<50
AD-6	5/13/02	19.18	5.51	NP	NP	13.67	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	19.18	6.38	NP	NP	12.8	2,310	<6.0	<3.0	<200	<1.0	5	31,700	<10	<50
	09/07/10 5/13/02 09/01/09	19.18 13.74 13.74	7.65 5.02 2.9	NP NP NP	NP NP NP	8.72 10.84	746 15,100 652	<6.0 <5.0 <6.0	<3.0 13.2 <3.0	<200 <200 <200	<1.0 NA <1.0	3.6 NA <3.0	77,500 84,500 <5000	<10 16.5 <10	<50 NA <50
LPG-1	09/08/10	13.74	5.35	NP	NP	8.39	2,340	<6.0	20.5	<200	<1.0	<3.0	6,230	<10	<50
LPG-2	5/13/02 09/01/09 09/08/10	9.3 9.3 9.3	3.5 3.02 3.13	NP NP NP	NP NP NP	5.8 6.28 6.17	5,490 <200 278	<5.0 <6.0 <6.0	5.8 <3.0 5	<200 <200 <200	NA <1.0 <1.0	NA <3.0 <3.0	28,600 16,700 17,800	11.9 <10 <10	NA <50 <50
PER-1	5/13/02 08/31/09 09/07/10	19.29 19.29 19.29	10.34 8.81 10.17	NP NP NP	NP NP NP	8.95 10.48 9.12	1,660 3,710 677	<5.0 <6.0 <6.0	5.5 <3.0 <3.0	<200 <200 <200	NA <1.0 <1.0	NA <3.0 <3.0	56,200 33,800 50,600	<10 <10 <10	NA <50 <50
PER-2	5/13/02	12.91	6.22	NP	NP	6.69	17,100	<5.0	29.9	<200	NA	NA	24,400	31	NA
	09/02/09	12.91	6.27	NP	NP	6.64	509	<6.0	<3.0	<200	<1.0	<3.0	22,800	<10	<50
	09/09/10	12.91	8.59	NP	NP	4.32	15,000	<6.0	18	<200	3.9	<3.0	29,800	26	<50
PER-3	5/13/02	9.55	4.91	NP	NP	4.64	2,360	<5.0	13.6	<200	NA	NA	40,700	<10	NA
	09/02/09	9.55	5.11	NP	NP	4.44	238	<6.0	8.9	<200	<1.0	<3.0	18,000	<10	<50
	09/09/10	9.55	5.19	NP	NP	4.36	1,630	<6.0	9.3	<200	<1.0	<3.0	102,000	<10	<50
	00/00/10	0.00	0.10	141	141	4.00	1,550	\0.0	0.0	~200	×1.0	~5.0	102,000	~10	-50

	or readin	Ī						Me	tals						
Sample ID	Date	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
NJDEP		1,300	300	5	NA	50	2	100	NA	40	40	50,000	2	60	2,000
	5/13/02	<25	6,430	3.9	25,100	205	<0.20	NA	115,000	<5.0	NA	321,000	NA	<50	30.2
AB-1	09/01/09 09/08/10	34 92.4	5,830 30,600	21 66	<5000 13,800	24 119	<0.20 <0.20	<10 51.2	17,500 39,000	<10 <20	<10 <20	15,400 31,600	<2.0 <4.0	<50 103	61.8 248
AB-2	5/13/02	<25	16,900	11.7	58,900	725	<0.20	NA	21,000	<5.0	NA	431,000	NA	<50	50.8
45.05	09/01/09	21.3	30,600	4.5	19,700	141	<0.20	<10	13,700	<10	<10	292,000	<2.0	<50	25.5
AB-2R	09/08/10	30.8	24,400	11.2	10,700	454	<0.20	<10	11,600	<10	<10	115,000	<2.0	<50	29.9
	5/13/02	<25	100,000	10.7	57,700	479	<0.20	NA	26,900	<5.0	NA	340,000	NA	<50	35.8
AB-3	09/01/09	10.7	114,000	4.4	183,000	364	<0.20	<10	81,100	<10	<10	1,070,000	<4.0	<50	<20
VD-2	09/08/10	17.5	81,700	<3.0	72,000	3,590	<0.20	<10	154,000	<10	<10	1,150,000	<2.0	<50	37.5
	5/13/02	<25	16,200	10.2	98,100	212	0.2	NA	25,400	<5.0	NA	409,000	NA	<50	26.2
45.4	09/01/09	10.4	2,370	8.3	6,600	362	<0.20	115	68,000	<5.0 <10	<10	296,000	<2.0	<50 <50	528
AB-4	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	=11.0														
	5/13/02	<25	39,700	4.9	49,800	879	<0.20	NA -10	188,000	<5.0	NA -10	822,000	NA -2.0	<50	28.2
AB-5	09/01/09 09/08/10	<10 53.9	4,600 7,540	4.1 6	<5,000 <5,000	39 36	<0.20 <0.20	<10 <10	<10,000 <10,000	<10 <10	<10 <10	<10000 12,700	<2.0 <2.0	<50 <50	<20 26.6
	00/00/10	00.0	1,040		10,000	- 00	V0.20	110	110,000	110	V10	12,700	ν2.0	100	20.0
	5/13/02	NA	14,300	NA	NA	2,760	NA	NA	NA	NA	NA	81,400	NA	NA	NA
AD-1	08/31/09	35.6	1,390	<3.0	6,060	1,710	<0.20	14.1	<10,000	<10	<10	156,000	<2.0	<50	43.3
	09/10/10	50.5	1,260	<3.0	5,720	1,210	<0.20	<10	<10,000	<10	<10	145,000	<2.0	<50	<20
	5/13/02	NA	21,600	NA	NA	10,300	NA	NA	NA	NA	NA	91,300	NA	NA	NA
AD-2	08/31/09	39.2	22,100	<3.0	65,300	14,100	<0.20	24	<10,000	<10	<10	239,000	<2.0	<50	<20
AD-2	09/07/10	<10	15,000	<3.0	78,100	16,700	<0.20	20.4	<10,000	<20	<10	304,000	<4.0	<50	<20
	5/40/00				N14	0.470	.	N.1.0			110	07.000	N.1.4	.	
	5/13/02 08/31/09	NA <10	5,370 <100	NA <3.0	NA 17,000	3,470 24	NA <0.20	NA <10	NA <10,000	NA <10	NA <10	97,200 44,000	NA <2.0	NA <50	NA <20
AD-3	09/08/10	26.2	2,800	<3.0	16,400	373	<0.20	<10	<10,000	<10	<10	42,900	<2.0	<50	<20
	5/13/02	NA	9,510	NA	NA	6,280	NA	NA	NA	NA	NA	270,000	NA	NA	NA
AD-4	08/31/09 09/07/10	42.8	6,540 25,100	5.1 7.2	12,400	547	<0.20 <0.20	<10 <10	<10,000	<10	<10 <10	245,000	<2.0	<50 <50	27.5 22.5
	09/07/10	54.5	25,100	1.2	27,600	2,430	<0.20	<10	<10,000	<10	<10	369,000	<2.0	<50	22.5
	5/13/02	NA	16,900	NA	NA	3,250	NA	NA	NA	NA	NA	48,000	NA	NA	NA
AD-5	08/31/09	23.3	2,010	<3.0	36,700	3,220	<0.20	11.3	<10,000	<10	<10	190,000	<2.0	<50	<20
	09/07/10	35.2	525	<3.0	35,000	3,830	<0.20	12.7	<10,000	<10	<10	126,000	<2.0	<50	<20
	5/13/02	NA	8,580	NA	NA	4,810	NA	NA	NA	NA	NA	88,200	NA	NA	NA
AD 6	08/31/09	39.7	3,510	5.2	<5,000	142	<0.20	<10	<10,000	<10	<10	20,600	<2.0	<50	40.5
AD-6	09/07/10	13.9	1,280	<3.0	8,450	52.2	<0.20	<10	<10,000	<10	<10	30,000	<2.0	<50	42.4
	E/40/00	40.7	44 500	22.2	47.600	0 200	40 00	N1A	7.000	.F ^	N1 A	440.000	N/A	.50	07.7
	5/13/02 09/01/09	49.7 26.9	44,500 1,920	22.3 3.6	47,600 <5,000	8,380 440	<0.20 <0.20	NA <10	7,090 <10,000	<5.0 <10	NA <10	112,000 19,900	NA <2.0	<50 <50	87.7 41.6
LPG-1	09/08/10	36.7	19,100	18.4	<5,000	757	<0.20	<10	<10,000	<10	<10	21,800	<2.0	<50	26.4
	5/13/02	<25	40,500	14.8	17,700	8,550	<0.20	NA	16,600	<5.0	NA	141,000	NA	<50	54.4
LPG-2	09/01/09	22	15,500	<3.0	9,200	382	<0.20	<10	10,300	<10	<10	72,000	<2.0	<50	29.3
	09/08/10	21.8	41,400	<3.0	9,690	459	<0.20	<10	10,600	<10	<10	50,000	<2.0	<50	<20
	5/13/02	<25	1,240	3.9	6,330	153	<0.20	NA	<5,000	<5.0	NA	15,100	NA	<50	<20
PER-1	08/31/09	29.2	3,530	7.9	5,290	1,000	<0.20	<10	<10,000	<10	<10	11,300	<2.0	<50	30.5
. =	09/07/10	33.3	873	<3.0	6,720	1,740	<0.20	<10	<10,000	<10	<10	15,800	<2.0	<50	28
	5/13/02	63.6	30,700	51.4	5,330	263	<0.20	NA	21,100	5	NA	22,700	NA	100	101
DED 0	09/02/09	17.4	3,240	3.1	<5,000	43	<0.20	<10	<10,000	<10	<10	<10,000	<2.0	<50	22.5
PER-2	09/09/10	288	16,800	65	<5,000	175	0.41	45.6	<10,000	<10	<10	<10,000	<2.0	<50	735
	=11.0														
	5/13/02 09/02/09	<25 <10	54,000 7,940	12.2 <3.0	60,100 9,010	513 535	0.25 <0.20	NA <10	32,000 <10,000	5 <10	NA <10	599,000 104,000	NA <2.0	<50 <50	40.2 <20
PER-3	09/02/09	36.3	11,200	4.9	65,300	1,670	0.29	<10	15,600	<10	<10	596,000	<2.0	<50 <50	29.4
			,		22,000	.,,,,,			,						
		-					•		-	•				•	

			ociscy			Vo	latile Organ	ic Compour	nds				
Sample ID	Date	Acetone	Benzene	2-Butanone (MEK)	Chlorobenzene	Chloroform	Chloroethane	Cyclohexane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane
NJDEP		6,000	1	300	50	70	5	NA	600	600	75	1,000	50
AB-1	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	44.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-2	5/13/02	5.1	0.51	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
AB-2R	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-3	5/13/02	ND	75.9	ND	5.4	ND	ND	NA	NA	NA	NA	NA	ND
	09/01/09	ND	15.1	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-4	5/13/02	ND	0.71	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
AB-5	09/01/09	8.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-1	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	5.7
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.45
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-2	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	2,040
	08/31/09	ND	10.3	ND	1.9	9.1	ND	6.4	2.3	1.7	4.5	12.3	1,230
	09/07/10	ND	ND	ND	58.8	ND	ND	ND	ND	ND	46.9	ND	1,950
AD-3	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	0.98
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	6.8	ND	304	171	ND	NA	NA	NA	NA	NA	161
AD-4	08/31/09	ND	1.9	ND	125	ND	ND	ND	25.5	34.7	47.6	ND	0.43
	09/07/10	ND	12.4	ND	938	ND	ND	ND	59.2	107	284	ND	0.68
AD-5	5/13/02	ND	ND	ND	13.6	ND	ND	NA	NA	NA	NA	NA	ND
	08/31/09	ND	1.2	ND	44.9	0.39	ND	ND	362	8.9	113	ND	4
	09/07/10	ND	ND	ND	3.1	ND	ND	ND	9.4	ND	5.6	ND	ND
AD-6	5/13/02	ND	ND	ND	47.3	ND	ND	NA	NA	NA	NA	NA	ND
	08/31/09	ND	ND	ND	ND	0.94	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	0.44	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
LPG-1	09/01/09	3.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-2	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-1	5/13/02	ND	0.48	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	08/31/09	ND	1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-2	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	09/02/09	9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DED 2	5/13/02	4.1	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-3	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NA - Not Analyzed

							Vo	latile Organ	ic Compour	nds					
Sample ID	Date	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,4-Dioxane	Ethylbenzene	Freon 113	Isopropylbenzene	Methylcyclohexane	Methyl Tert Butyl Ether (MTBE)	Tert Butyl Alcohol	Methylene chloride	Tetrachloroethene
NJDEP	GWQS	2	1	70	100	1	10	700	NA	NA	NA	70	100	3	1
AB-1	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-2	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
AB-2R	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-3	5/13/02	ND	ND	ND	ND	ND	NA	7.7	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	0.31	ND	2.2	ND	2.6	25.4	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-4	5/13/02	ND	ND	ND	ND	ND	NA	1.6	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-5	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-1	5/13/02	ND	5.2	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-2	5/13/02	ND	23,000	ND	ND	171	NA	ND	NA	NA	NA	NA	NA	ND	368
	08/31/09	19.1	5,300	13.6	2.2	60.1	28,400	5.2	ND	5.5	6.6	0.36	ND	17	183
	09/07/10	ND	11,100	ND	ND	ND	38,900	ND	ND	ND	ND	ND	ND	ND	263
AD-3	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-4	5/13/02 08/31/09 09/07/10	500 1.8 7.5	941 1 ND	23.6 0.49 2.2	ND ND ND	38.1 0.63 1.2	NA ND ND	2 ND 1.3	NA ND ND	NA ND 0.69	NA ND ND	NA ND ND	NA ND ND	ND ND ND	ND ND
AD-5	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	17.8	6.7
	08/31/09	ND	8.8	6,580	36.3	ND	ND	ND	30.5	2.9	ND	4	ND	ND	3,260
	09/07/10	ND	ND	644	2.1	ND	ND	ND	8.1	ND	ND	ND	ND	ND	450
AD-6	5/13/02	ND	ND	2,340	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	4,420
	08/31/09	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-1	5/13/02	ND	ND	ND	ND	ND	NA	ND	4.5	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-2	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-1	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	0.28	ND	ND	ND	56.8	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-2	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-3	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7.8	ND	ND

NA - Not Analyzed

					Volatile	Organic Co	mpounds			
Sample ID	Date	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl chloride	Xylene (total)	Total TIC, Volatile
NJDEP	GWQS	600	NA	9	30	3	1	1	1,000	500
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	6.3
AB-1	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0
AD-1	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	73
AB-2	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	11
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0
AB-2R	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	11.9	531
AD O	09/01/09	ND	ND	ND	ND	ND	ND	ND	0.87	12.8
AB-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	6	92.8
	09/01/09	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND	92.8
AB-4	09/01/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	33,30,10	14/3	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	100
AB-5	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0
AD-5	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	0.47	ND	ND	4.42
AD-1	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	F/40/00	470	NIA	NIA	0.000	ND	400	ND	ND	^
	5/13/02 08/31/09	178 44.7	NA 0.94	NA 3.4	9,960 1,870	ND 21.5	139 69.6	ND 235	ND 46	0 88.9
AD-2	09/07/10	88.2	ND	ND	6,800	ND	88.4	374	27.1	0
	09/01/10	00.2	ND	IND	0,000	ND	00.4	3/4	21.1	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	33
AD-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0
AD-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	84.9	5.4	11.6	10.3	18.7	2,592.40
AD-4	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	5.3
	09/07/10	ND	ND	4.5	ND	ND	ND	ND	0.58	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	167.1
	08/31/09	1.1	23	95.7	0.83	ND	1,430	49.1	ND	0
AD-5	09/07/10	ND	4.4	3.5	ND	ND	183	ND	2.5	0
	33,31710	.,,,,		0.0		.,,,,		.,,,,	0	
	5/13/02	ND	NA	NA	ND	ND	873	207	ND	528
AD-6	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0
1.50	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	E/40/00	ND	NIA	N/A	N.D.	N.D.	ND	ND	NID.	2.024
	5/13/02 09/01/09	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	2,631
LPG-1	09/01/09	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	7.1
LPG-2	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	3.3
PER-1	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	490
DED 0	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0
PER-2	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	1,800
	09/02/09	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,800 0
PER-3	09/02/09	ND ND	ND	ND	ND	ND	ND	ND	ND	0
	33,30,10	.,,,,		.,,,			.,,,	.,,,,	.,,,,	
-		_	•		•	•	•	•	•	•

						Semi-volati	le Organic (Compounds				
Sample ID	Date	Pentachlorophenol	4-Chloro-3-methyl phenol	Acetophenone	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene
NJDEP	GWQS	0.3	NA	700	400	100	2,000	0.1	0.1	0.2	100	0.5
AB-1	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	0.165	ND	0.265	0.295	ND	ND	ND	ND
AB-2	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
AB-2R	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-3	5/13/02	NA	NA	ND	13	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	0.436	0.429	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	4.59	ND	0.221	ND	ND	ND	ND	ND
AB-4	5/13/02	NA	NA	ND	49	NA	0.64	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-5	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	0.193	0.304	ND	ND	ND	ND
AD-1	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-2	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	0.677	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-3	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-4	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-5	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-6	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-1	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-2	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-1	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-2	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-3	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

NA - Not Analyzed

						Semi-volati	le Organic	Compounds				
Sample ID	Date	1,1'-Biphenyl	2,4-Dimethylphenol	Chrysene	2-Methylphenol	3&4-Methylphenol	Phenol	Fluoranthene	2,4,5-Trichlorophenol	Fluorene	2,4,6-Trichlorophenol	Hexachlorobenzene
NJDEP	GWQS	400	100	5	NA	NA	2,000	300	700	300	20	0.02
AB-1	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	0.103	ND	ND	ND	0.389	ND	0.354	ND	ND
AB-2	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
AB-2R	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-3	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	6.7	NA	NA
	09/01/09	ND	ND	ND	ND	ND	0.591	ND	ND	ND	21.2	ND
	09/08/10	ND	ND	ND	ND	ND	ND	0.18	ND	2.01	ND	ND
AB-4	5/13/02	ND	2	NA	ND	0.84	ND	ND	NA	16.9	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-5	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	0.113	ND	ND	ND	0.269	ND	0.172	ND	ND
AD-1	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-2	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	1.2	ND	ND	ND	ND	ND	ND	ND	0.298	ND	ND
AD-3	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-4	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-5	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-6	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-1	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-2	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-1	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-2	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-3	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

						Semi-volati	ile Organic (Compounds				
Sample ID	Date	Indeno(1,2,3-cd)pyrene	Benzaldehyde	Naphthalene	Phenanthrene	Pyrene	Butyl benzyl phthalate	4-Chloroaniline	Carbazole	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene
NJDEP	GWQS	0.2	NA	300	100	200	100	30	NA	75	600	600
AB-1	5/13/02	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	1.54	0.375	ND	ND	ND	ND	ND	ND
AB-2	5/13/02	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-2R	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AB-3	5/13/02	NA	NA	52.7	5.4	ND	ND	ND	2.7	ND	ND	ND
	09/01/09	ND	0.287	0.503	0.316	ND	ND	6.1	ND	NA	NA	NA
	09/08/10	ND	ND	ND	0.223	0.188	ND	ND	ND	ND	ND	ND
AB-4	5/13/02	NA	NA	141	8	ND	ND	ND	10.7	ND	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-5	5/13/02	NA	NA	ND	1.2	ND	ND	ND	ND	ND	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	0.726	0.302	ND	ND	ND	ND	ND	ND
AD-1	5/13/02	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/10/10	ND	ND	ND	0.116	ND	ND	ND	ND	ND	ND	ND
AD-2	5/13/02	NA	NA	28.2	ND	ND	1.9	ND	ND	3.6	3.6	1.6
	08/31/09	ND	ND	2.82	ND	ND	ND	ND	ND	NA	NA	NA
	09/07/10	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND
AD-3	5/13/02	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-4	5/13/02	NA	NA	1.6	ND	ND	ND	ND	ND	192	290	111
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/07/10	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND
AD-5	5/13/02	NA	NA	ND	ND	ND	1.8	ND	ND	8.4	13.5	0.59
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AD-6	5/13/02	NA	NA	ND	ND	ND	1.8	ND	ND	68.6	172	3.8
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/07/10	ND	ND	0.257	ND	ND	ND	ND	ND	ND	ND	ND
LPG-1	5/13/02	NA	NA	ND	1.4	ND	2	ND	ND	ND	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
LPG-2	5/13/02	NA	NA	ND	ND	ND	1.9	ND	ND	ND	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	ND	0.133	ND	ND	ND	ND	ND	ND
PER-1	5/13/02	NA	NA	ND	ND	ND	2	ND	ND	ND	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-2	5/13/02	NA	NA	ND	ND	ND	2.9	ND	ND	ND	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-3	5/13/02	NA	NA	ND	ND	ND	1.9	ND	ND	ND	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/09/10	ND	ND	ND	0.125	ND	ND	ND	ND	ND	ND	ND

						Semi	i-volatile Orç	ganic Comp	ounds				
Sample ID	Date	3,3'-Dichlorobenzidine	Dibenzofuran	Di-n-butyl phthalate	Di-n-octyl phthalate	Diethyl phthalate	Dimethyl phthalate	bis(2-Ethylhexyl)phthalate	Isophorone	2-Methylnaphthalene	4-Nitroaniline	1,2,4-Trichlorobenzene	Total TIC, Semi-Volatile
NJDEP	GWQS	30	NA	NA	100	6,000	NA	3	40	30	NA	9	500
AB-1	5/13/02	NA	ND	ND	ND	ND	NA	1	NA	ND	NA	ND	35.1
	09/01/09	ND	ND	ND	ND	ND	ND	165	ND	ND	ND	NA	0
	09/08/10	ND	ND	ND	ND	ND	ND	5.2	ND	ND	ND	ND	0
AB-2	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	0
AB-2R	09/01/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.1 ND	ND ND	ND ND	ND ND	NA ND	6
AB-3	5/13/02	NA	ND	1	ND	ND	NA	ND	NA	50.1	NA	ND	367.3
	09/01/09	11.4	ND	ND	ND	ND	45.6	10.7	ND	ND	ND	NA	212.8
	09/08/10	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	50.2
AB-4	5/13/02	NA	7.6	ND	ND	ND	NA	ND	NA	67.5	NA	ND	278.1
	09/01/09	ND	ND	ND	ND	ND	ND	8.9	ND	ND	ND	NA	0
	09/08/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
AB-5	5/13/02	NA	22.8	ND	ND	ND	NA	ND	NA	ND	NA	ND	65.8
	09/01/09	ND	ND	ND	ND	ND	ND	94.3	ND	ND	ND	NA	39
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
AD-1	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	158
	08/31/09	ND	ND	ND	ND	ND	ND	53.5	ND	ND	ND	NA	0
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.3
AD-2	5/13/02	NA	ND	ND	ND	ND	NA	5.1	NA	9.8	NA	2.5	840.2
	08/31/09	ND	ND	ND	ND	ND	ND	21.1	ND	ND	ND	NA	440.1
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	5	ND	ND	71.2
AD-3	5/13/02 08/31/09 09/08/10	NA ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	NA ND ND	1.4 273 ND	NA ND ND	ND ND ND	NA ND ND	ND NA ND	0 0
AD-4	5/13/02	NA	ND	ND	ND	ND	NA	2.4	NA	ND	NA	80.5	20.7
	08/31/09	ND	ND	ND	ND	ND	ND	2.4	ND	ND	ND	NA	13
	09/07/10 5/13/02 08/31/09	ND NA ND	ND ND ND	1.9 ND	ND ND ND	ND ND ND	ND NA ND	3.8 2.3	ND NA ND	ND ND ND	ND NA ND	19.1 NA	18.1 19.4 52.3
AD-5	09/07/10	ND NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND 2.4	ND NA	ND ND	ND NA	ND 49.2	342.6
AD-6	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	25.7 ND	ND ND	ND ND	ND ND	NA ND	0
LPG-1	5/13/02	NA	ND	ND	ND	ND	NA	1	NA	ND	NA	ND	351.3
	09/01/09	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	NA	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
LPG-2	5/13/02	NA	ND	ND	ND	ND	NA	1.6	NA	ND	NA	ND	0
	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
PER-1	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	8.4
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	0
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
PER-2	5/13/02	NA	ND	ND	ND	ND	NA	1.7	NA	ND	NA	ND	0
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	21.7
	09/09/10	ND	ND	ND	ND	ND	ND	3.6	ND	ND	ND	ND	400
PER-3	5/13/02	NA	ND	ND	ND	ND	NA	1.1	NA	ND	NA	ND	117.4
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	22
	09/09/10	ND	ND	ND	ND	ND	ND	7.2	ND	ND	ND	ND	0

			G	auging Da	ıta						Metals				
Sample ID	Date	TOC Elevation (ft)	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	GW Elevation (ft)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt
NJDEP	GWQS		-	-	-	-	200	6	3	6000	NA	4	NA	70	100
PER-4	5/13/02 08/31/09 09/07/10	12.78 12.78 12.78	7.6 6.2 7.02	NP NP NP	NP NP NP	5.18 6.58 5.76	460 271 1,930	<5.0 <6.0 <6.0	25.5 3.6 16.2	327 <200 <200	NA <1.0 <1.0	NA 7.8 3.1	91,300 13,100 25,800	<10 <10 <10	NA <50 <50
PER-5	5/13/02 08/31/09 09/08/10	20.47 20.47 20.47	10.22 10.91 11.41	NP NP NP	NP NP NP	9.56 9.06	10,300 462 2,610	<5.0 <6.0 <6.0	<5.0 <3.0 3.4	<200 <200 <200	NA <1.0 <1.0	NA <3.0 <3.0	83,000 20,800 40,200	14.7 <10 <10	NA <50 <50
PER-6	5/13/02	21.93	8.85	NP	NP	13.08	3,540	<5.0	<5.0	<200	NA	NA	26,300	<10	NA
PER-6R	08/31/09 09/10/10	23.79 23.79	2.82 2.13	NP NP	NP NP	20.97 21.66	2,190 1,160	<6.0 <6.0	<3.0 <3.0	<200 <200	<1.0 <1.0	<3.0 <3.0	20,700 33,800	<10 <10	<50 <50
PER-7	5/13/02 09/01/09 09/08/10	11.15 11.15 11.15	8.21 6.6 7.21	NP NP NP	NP NP NP	2.94 4.55 3.94	17,200 3,230 10,400	<5.0 <6.0 <6.0	9.7 3.9 11.1	<200 <200 <200	NA <1.0 <1.0	NA <3.0 <3.0	19,000 20,200 10,100	36.7 <10 21.3	NA <50 <50
PER-8	5/13/02 09/01/09 09/08/10	10.4 10.4 10.4	- 4.1 6.5	- NP NP	- NP NP	6.3 3.9	3,930 417 1,050	<5.0 <6.0 <6.0	7.9 <3.0 4.2	<200 <200 <200	NA <1.0 <1.0	NA 5.8 <3.0	14,600 16,700 17,100	<10 <10 <10	NA <50 <50
PL-1	5/13/02 09/02/09 09/09/10	11.82 11.82 11.82	3.07 2.38 3.5	3.05 NP 3.48	0.02 NP 0.01	8.75 9.44 8.32	NA <200 NA	NA <6.0 NA	NA 8 NA	NA 1,850 NA	NA <1.0 NA	NA <3.0 NA	NA 353,000 NA	NA <10 NA	NA <50 NA
PL-2	5/13/02 08/31/09 09/09/10	11.78 11.78 11.78	2.7 2.1 2.92	2.68 2.11 2.9	0.02 0.01 0.01	9.08 9.68 8.86	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
PL-3	5/13/02	12.81	3.01	NP	NP	9.8	2,910	<5.0	39.1	553	NA	NA	57,500	31.4	NA
PL-3R	08/31/09 09/09/10	12.27 12.27	2.74	- NP	- NP	9.53	NA 268	NA <6.0	NA 10.2	NA <200	NA <1.0	NA <3.0	NA 72,700	NA <10	NA <50
PL-4	5/13/02	13.3	3.12	NP	NP	10.18	563	10.6	233	<200	NA	NA	22,600	22.3	NA
PL-4R	09/01/09 09/09/10	12.4 12.4	2.71 3.05	NP NP	NP NP	9.69 9.35	812 2,050	<6.0 <6.0	15 21.6	<200 <200	<1.0 <1.0	<3.0 <3.0	131,000 134,000	10.5 10.6	<50 <50
PL-5	5/13/02 08/31/09	9.08 9.08 Mob	1.82 1.03 ile LNAPL	1.8 1.23 Recovery	0.02 0.2 System In F	7.26 8.05 Place	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
PL-6	5/13/02	11.95	2.87	NP	NP	9.08	428	<5.0	<5.0	<200	NA	NA	73,100	<10	NA
PL-6R	09/02/09 09/09/10	11.49 11.49	2.1	NP NP	NP NP	9.39 9.13	552 3,700	<6.0 <6.0	18.7 11.6	<200 <200	<1.0 <1.0	<3.0 <3.0	59,100 162,000	<10 1,720	<50 <50
PL-7	5/13/02 09/01/09 09/09/10	13.06 13.06 13.06	4.61 4.52 5.27	NP NP NP	NP NP NP	8.45 8.54 7.79	1,650 274 1,510	<5.0 <6.0 <6.0	7.5 12.1 36.1	<200 <200 <200	NA <1.0 <1.0	NA <3.0 <3.0	12,400 7,390 8,050	<10 <10 <10	NA <50 <50
PL-8	5/13/02	12.39	4.02	NP	NP	8.37	<200	<5.0	<5.0	<200	NA	NA	11,800	<10	NA
PL-8R	09/01/09	11.96	3.42	NP	NP	8.54	1,730	<6.0	18.6	341	<1.0	<3.0	47,600	11.7	<50
	09/09/10	11.96	4.43	NP	NP	7.53	1,340	<6.0	19.3	243	<1.0	<3.0	30,800	10.5	<50
PL-9	5/13/02 09/02/09	11.95 11.26	2.18 1.7	NP NP	NP NP	9.77 9.56	3,600 407	<5.0 <6.0	28.2 36.2	1,050 658	NA <1.0	NA <3.0	182,000 88,500	<10 <10	NA <50
PL-9R	09/02/09	11.26	1.7	NP NP	NP NP	9.36	3,240	<6.0 <6.0	16.8	218	<1.0	<3.0	155,000	20.7	<50 <50
TC-1	5/13/02 08/31/09 09/07/10	20.48 20.48 20.48	10.48 8.29 9.84	NP NP NP	NP NP NP	10 12.19 10.64	NA 5,220 2,960	NA <6.0 <6.0	NA <3.0 <3.0	NA <200 <200	NA 5.6 2.3	NA 3.6 <3.0	NA 89,700 69,500	NA <10 <10	NA <50 <50
TC-2	5/13/02 08/31/09 09/07/10	19.57 19.57 19.57	9.7 7.38 8.83	NP NP NP	NP NP NP	9.87 12.19 10.74	NA 334 2,280	NA <6.0 <12	NA 22.1 78.7	NA 207 3,650	NA <1.0 7.6	NA <3.0 <6.0	NA 14,300 35,100	NA <10 <50	NA <50 <100
	-														

		ig, ivew	•					Me	tals						
Sample ID	Date	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
NJDEP	GWQS	1,300	300	5	NA	50	2	100	NA	40	40	50,000	2	60	2,000
	5/13/02	<25	51,400	<3.0	125,000	707	<0.20	NA	49,600	<5.0	NA	1,190,000	NA	<50	<20
PER-4	08/31/09	19.1	7,990	3.8	<5,000	123	<0.20	<10	<10000	<10	<10	81,600	<2.0	<50	<20
	09/07/10	61.1	16,300	15.6	22,400	368	<0.20	10	15,800	<10	<10	278,000	<2.0	<50	45.6
	5/13/02	29.3	15,500	10.4	17,800	372	<0.20	NA	<5,000	6.5	NA	24,500	NA	<50	49.7
PER-5	08/31/09	25.9	580	<3.0	<5,000	21	<0.20	<10	<10,000	<10	<10	30,900	<2.0	<50	<20
	09/08/10	54.7	4,090	6.5	6,680	101	0.22	<10	<10,000	<10	<10	38,000	<2.0	<50	48.5
PER-6	5/13/02	42.9	5,150	9.5	5,270	313	<0.20	NA	<5000	5	NA	25,800	NA	<50	34.2
F LIX-0	08/31/09	41.3	2,570	6	<5,000	479	<0.20	<10	12,800	<10	<10	32,400	<2.0	<50	31.5
PER-6R	09/10/10	52	1,880	4	7,280	288	<0.20	<10	<10,000	<10	<10	26,600	<2.0	<50	30.7
	=112		.=												
<u> </u>	5/13/02 09/01/09	55.7 28.7	45,600 7,650	34.1 9.4	18,000 5,590	537 71	0.2 <0.20	NA 10	15,800 <10000	<5.0 <10	NA <10	288,000 166,000	NA <2.0	<50 <50	98.8 42.1
PER-7	09/08/10	40.8	25,800	33.9	8,900	142	0.21	13.2	<10,000	<10	<10	152,000	<2.0	<50	54.1
_	5/13/02	<25	12,100	14.8	<5,000	121	<0.20	NA	8,920	<5.0	NA	30,200	NA	<50	56.8
PER-8	09/01/09 09/08/10	24.1 26.7	3,260 9,010	10.1 11.6	<5,000 5,890	420 197	<0.20 <0.20	12.4 <10	<10,000 <10,000	<10 <10	<10 <10	37,300 46,500	<2.0 <2.0	<50 <50	725 202
-	09/06/10	20.7	9,010	11.0	3,090	197	<0.20	<10	<10,000	<10	<10	40,300	₹2.0	<50	202
1	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	<10	18,600	<3.0	199,000	720	<0.20	<10	70,200	<10	<10	1,540,000	<2.0	<50	<20
-	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-//-/														
PL-3	5/13/02 08/31/09	<25 NA	84,700 NA	7.8 NA	199,000 NA	209 NA	<0.20 NA	NA NA	87,100 NA	9.3 NA	NA NA	1,510,000 NA	NA NA	<50 NA	37.4 NA
PL-3R	09/09/10	42	35,200	<3.0	238,000	277	<0.20	<10	104,000	<10	<10	1,870,000	<2.0	<50	<20
	00,00,00		00,000						,			1,010,000			
PL-4	5/13/02	<25	7,450	4.9	9,430	174	0.26	NA	38,100	<5.0	NA	4,460,000	NA	334	<20
PL-4R	09/01/09 09/09/10	31.8 51.9	3,380 3,350	<3.0 4.8	364,000 408,000	321 424	<0.20 <0.20	<10 <10	164,000 154,000	<10 <10	<10 <10	3,240,000 2,770,000	<2.0 <2.0	<50 <50	<20 <20
1 5-410	09/09/10	31.9	3,350	4.0	400,000	424	<0.20	<10	154,000	<10	<10	2,770,000	<2.0	<30	<20
1	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-5	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6	5/13/02	<25	15,700	<3.0	85,700	696	<0.20	NA	34,500	<5.0	NA	973,000	NA	<50	<20
	09/02/09	13.3	47,400	<3.0	95,900	369	<0.20	<10	42,300	<10	<10	1,010,000	<2.0	<50	<20
PL-6R	09/09/10	53.1	206,000	<15	526,000	662	<0.20	58.6	196,000	<10	<10	3,870,000	<10	<50	35.1
	5/13/02	J?E	g 20A	-20	~5.000	200	<0.20	NIA	~E 000	∠E ∩	NΙΛ	7 000	NA	∠E∩	2F 7
DI 7	09/01/09	<25 <10	8,280 14,600	<3.0 <3.0	<5,000 <5,000	200 123	<0.20 <0.20	NA <10	<5,000 <10,000	<5.0 <10	NA <10	7,980 <10,000	<2.0	<50 <50	25.7 21.9
PL-7	09/09/10	39.8	52,600	3.9	<5,000	151	0.32	<10	<10,000	<10	<10	<10,000	<2.0	<50	65
D	F//6/22		465				0.55			-		40 :			
PL-8	5/13/02 09/01/09	<25 51.9	192 70,400	<3.0 4.5	<5,000 83,000	<15 140	<0.20 <0.20	NA <10	<5,000 58,300	<5.0 <10	NA <10	10,100 1,350,000	NA <2.0	<50 <50	<20 34.4
PL-8R	09/01/09	42.6	64,700	3.6	73,300	98	1.3	13.8	58,300	<10	<10	1,350,000	<2.0	<50 <50	31.8
PL-9	5/13/02	<25	117,000	16.9	151,000	1,010	<0.20	NA 40	68,500	<5.0	NA 40	1,900,000	NA	<50	27
PL-9R	09/02/09 09/09/10	<10 36.9	44,000 9,320	<3.0 <15	98,400 435,000	405 114	<0.20 <0.20	<10 <50	60,000 194,000	<10 <10	<10 <10	1,440,000 3,290,000	<2.0 <10	<50 <50	<20 <20
. 2 5.0	03/03/10	30.8	3,320	\1J	700,000	114	~∪.∠∪	\ 30	134,000	\10	×10	5,230,000	V10	\30	\ZU
	5/13/02	NA	7,430	NA	NA	1,150	NA	NA	NA	NA	NA	42,000	NA	NA	NA
TC-1	08/31/09	<10	385	<3.0	25,500	2,040	<0.20	68.1	<10,000	<10	<10	157,000	<2.0	<50	327
 	09/07/10	38.1	574	<3.0	23,400	1,630	<0.20	50.5	<10,000	<10	<10	136,000	<2.0	<50	184
	5/13/02	NA	26,100	NA	NA	412	NA	NA	NA	NA	NA	9,430	NA	NA	NA
TC-2	08/31/09	<10	46,700	<3.0	<5,000	431	<0.20	<10	<10,000	<10	<10	11,600	<2.0	<50	<20
1.5-2	09/07/10	57.3	246,000	14.2	<25,000	1,560	<0.80	29.8	<50,000	<20	<50	<50,000	<10	<250	50.9

NA - Not Analyzed

		lg, ricw				Vo	olatile Organ	ic Compour	nds				
Sample ID	Date	Acetone	Benzene	2-Butanone (MEK)	Chlorobenzene	Chloroform	Chloroethane	Cyclohexane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane
NJDEP		6,000	1	300	50	70	5	NA	600	600	75	1,000	50
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
PER-4	08/31/09 09/07/10	ND 43.9	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
PER-5	08/31/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
DED 6	F/40/00	ND	ND	ND	ND	ND	ND	NIA	NIA	NIA	NIA	NIA	ND
PER-6	5/13/02 08/31/09	ND ND	ND ND	ND ND	ND ND	ND 0.43	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND
PER-6R	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
PER-7	09/01/09	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	14,300	ND	ND	ND	NA	NA	NA	NA	NA	ND
PER-8	09/01/09	ND ND	ND	ND	ND	ND	ND	ND ND	ND 0.50	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	0.56	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	11	29.1	ND	667	ND	ND	ND	6.5	9	33.1	ND	ND
	09/09/10	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
PL-2	08/31/09	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
	09/09/10	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
PL-3	5/13/02	ND	109	ND	0.7	ND	ND	NA	NA	NA	NA	NA	ND
PL-3R	08/31/09	NA ND	NA 62.5	NA	NA 0.50	NA	ND	NA 7.4	NA	NA	NA	NA ND	NA ND
FL-3K	09/09/10	ND	63.5	ND	0.56	ND	ND	7.4	ND	ND	ND	ND	ND
PL-4	5/13/02	ND	5.7	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
PL-4R	09/01/09 09/09/10	ND ND	0.79	ND ND	ND 0.56	ND ND	ND ND	ND ND	ND 0.2	ND ND	ND 0.44	ND ND	ND ND
F L-410	09/09/10	ND	3.6	ND	0.56	ND	ND	ND	0.3	ND	0.41	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
PL-5	08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		INA	INA	INA	INA	INA	IND	INA	INA	INA	INA	INA	INA
PL-6	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
PL-6R	09/02/09 09/09/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
***	12, 20, 10												
	5/13/02	ND ND	ND ND	ND ND	ND ND	ND ND	ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND
PL-7	09/01/09 09/09/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
PL-8	5/13/02	24.3	ND	ND ND	ND ND	ND	ND ND	NA ND	NA ND	NA ND	NA	NA ND	ND
PL-8R	09/01/09 09/09/10	ND ND	11 ND	ND ND	ND ND	ND ND	ND ND	ND 5.5	ND ND	ND ND	ND ND	ND ND	ND ND
PL-9	5/13/02 09/02/09	14.8 12.2	1.1	ND ND	1.2 1.2	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND
PL-9R	09/02/09	12.2 ND	1.7	ND ND	0.97	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TC-1	08/31/09	ND	ND	ND	ND	0.52	ND	ND ND	ND	ND	ND	ND	ND
10-1	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TC-2	08/31/09	ND	ND	ND	ND	ND	ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND
10-2	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

		ig, ivew					Vo	latile Organ	ic Compour	nds					
Sample ID	Date	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,4-Dioxane	Ethylbenzene	Freon 113	Isopropylbenzene	Methylcyclohexane	Methyl Tert Butyl Ether (MTBE)	Tert Butyl Alcohol	Methylene chloride	Tetrachloroethene
NJDEP	GWQS	2	1	70	100	1	10	700	NA	NA	NA	70	100	3	1
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
PER-4	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.78	ND 27.7	ND ND	ND ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
PER-5	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-6	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-6R	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
PER-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 EIX-1	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
PER-8	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FER-0	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	ND	ND	0.71	0.75	ND	ND	2.2	ND	1.1	1.4	4.7	2,280	ND	ND
1 2-1	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-3	5/13/02	ND	ND	ND	ND	ND	NA	1	NA	NA	NA	NA	NA	ND	ND
1 L-3	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
PL-3R	09/09/10	ND	ND	ND	ND	ND	ND	6	ND	1.7	5	111	98	ND	ND
PL-4	5/13/02	ND	ND	ND	ND	ND	NA	14	NA	NA	NA	NA	NA	ND	ND
FL-4	09/01/09	ND	ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND
PL-4R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0.57	ND	1.5	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-5	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.3	206	ND	ND
PL-6R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.7	103	ND	ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
PL-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 21	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-8	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/01/09	ND	ND	ND	ND	ND	ND	5.2	ND	10.2	ND	ND	ND	ND	ND
PL-8R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	15.4	1.1	0.94	ND	ND	ND
PL-9	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
	09/02/09	ND	ND	ND	ND	ND	ND	1.2	ND	2.6	0.53	39.9	174	ND	ND
PL-9R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	2.3	ND	39.1	136	ND	ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
TC-1	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	NA	NA	ND	ND
TC-2	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			l]]		1]		

		Volatile Organic Compounds										
Sample ID	Date	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl chloride	Xylene (total)	Total TIC, Volatile		
NJDEP	GWQS	600	NA	9	30	3	1	1	1,000	500		
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	6.4		
PER-4	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0		
FLIX-4	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	24		
	5/13/02	ND	NA	NA	1.1	ND	ND	ND	ND	1,900		
PER-5	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0		
PER-5	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0		
	=//22											
PER-6	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	7.3		
PER-6R	08/31/09 09/10/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0		
. 2 0												
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	1,012		
PER-7	09/01/09 09/08/10	ND ND	ND	ND ND	ND	ND	ND	ND	ND	0		
	03/00/10	ואר	ND	טאו	ND	ND	ND	ND	ND	0		
	5/13/02	16.5	NA	NA	ND	ND	ND	ND	ND	0		
PER-8	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0		
1 210-0	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0		
	5/40/00	110		110	N.1.0	N.1.0	.	N.1.0	.			
	5/13/02 09/02/09	NA 0.68	NA ND	NA ND	NA ND	NA ND	NA ND	NA 0.74	NA 1.5	NA 201.4		
PL-1	09/09/10	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA		
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PL-2	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA		
	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PL-3	5/13/02	1.5	NA	NA	ND	ND	ND	ND	14.2	450		
	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PL-3R	09/09/10	1.1	ND	ND	ND	ND	ND	ND	21.2	421		
								115				
PL-4	5/13/02	0.92 ND	NA ND	NA ND	ND ND	ND	ND	ND	42.3 ND	524.5		
PL-4R	09/01/09 09/09/10	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	16.5		
	00/00/10	IND	IND	IND	110	110	110	110	110	10.0		
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA		
PL-5	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA		
		NA	NA	NA	NA	NA	NA	NA	NA	NA		
PL-6	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	36.1		
DI OD	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0		
PL-6R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0		
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	0		
DI 7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0		
PL-7	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0		
PL-8	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	13.9		
1 2 0	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	122.2		
PL-8R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	216.9		
PL-9	5/13/02	ND ND	NA ND	NA ND	ND ND	ND	ND ND	ND ND	ND 4	226.9 66.3		
PL-9R	09/02/09 09/09/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.61	35.1		
	_,,-,-								.,-			
ĺ	5/13/02	ND	NA ND	NA	ND	ND	ND	ND	ND	0		
TC-1	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0		
	33/3//10	140	140	140	110	110	110	140	140	,		
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	35.8		
TC-2	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	30.3		
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	6.4		
I	1		ı	ı	ı	ı	l	ı	l			

						Semi-volati	ile Organic (Compounds				
Sample ID	Date	Pentachlorophenol	4-Chloro-3-methyl phenol	Acetophenone	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene
NJDEP	GWQS	0.3	NA	700	400	100	2,000	0.1	0.1	0.2	100	0.5
	5/13/02	NA	NA	ND	2.8	NA	ND	NA	NA	NA	NA	NA
DED 4	08/31/09	ND	ND	ND	0.258	ND	ND	ND	ND	ND	ND	ND
PER-4	09/07/10	ND	ND	ND	1.84	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
DED 5	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-5	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DED 0	5/40/00	N1.0	N14	ND	ND	N/A	ND	N/A		N/A	N14	
PER-6	5/13/02 08/31/09	NA ND	NA ND	ND ND	ND ND	NA ND	ND	NA ND	NA ND	NA	NA ND	NA ND
PER-6R	09/10/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
PER-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
-	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
	09/01/09	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND	0.154	0.222	0.659	0.338	0.187
PER-8	09/08/10	ND	ND	ND	ND	ND	ND	0.503	0.544	1.09	0.973	0.639
	00/00/10	ND	ND	NU	NU	IND	NU	0.000	0.044	1.00	0.070	0.000
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	ND	ND	ND	1.68	ND	0.589	0.279	ND	ND	ND	ND
,	09/09/10	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	08/31/09 09/09/10	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	09/09/10	INA	INA	IND	INA	INA	INA	INA	INA	INA	INA	INA
PL-3	5/13/02	NA	NA	ND	1.2	NA	ND	NA	NA	NA	NA	NA
	08/31/09	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
PL-3R	09/09/10	ND	ND	0.74	0.396	ND	ND	ND	ND	ND	ND	ND
DI 4	F/40/00	NIA	NIA	ND	00	NIA	4.5	NIA	NIA	NIA	NIA	NIA
PL-4	5/13/02 09/01/09	NA ND	NA ND	ND ND	26 0.921	NA ND	1.5 0.385	NA ND	NA ND	NA ND	NA ND	NA ND
PL-4R	09/09/10	ND	ND	ND	1.03	ND	0.255	ND	ND	ND	ND	ND
	00/00/10	110	110	110	1.00	IND	0.200	IND	IND	IND	110	IND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
PL-5	08/31/09	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
		NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
DI 6	E/12/02	NA	NA	ND	ND	NA	ND	NA	NA	NΙΛ	NA	NA
PL-6	5/13/02 09/02/09	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND
PL-6R	09/09/10	ND	ND	ND	0.314	ND	ND	ND	ND	ND	ND	ND
l	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
PL-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-8	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
1	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-8R	09/09/10	ND	ND	ND	0.401	ND	ND	ND	ND	ND	ND	ND
PL-9	5/13/02	NA	NA	ND	10.2	NA	ND	NA	NA	NA	NA	NA
DI OD	09/02/09	ND	ND	ND	ND 4.45	0.804	ND 0.000	ND	ND	ND	ND	ND
PL-9R	09/09/10	ND	ND	ND	1.45	ND	0.339	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TO 1	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TC-1	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TC-2	08/31/09	ND	0.54	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
			I									

	Ortivoadiii					Semi-volati	ile Organic (Compounds				
Sample ID	Date	1,1'-Biphenyl	2,4-Dimethylphenol	Chrysene	2-Methylphenol	3&4-Methylphenol	Phenol	Fluoranthene	2,4,5-Trichlorophenol	Fluorene	2,4,6-Trichlorophenol	Hexachlorobenzene
NJDEP	GWQS	400	100	5	NA	NA	2,000	300	700	300	20	0.02
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
PER-4	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 0.111	ND ND	ND ND
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
PER-5	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-6	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PER-6R	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
PER-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I LIX-I	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
PER-8	09/01/09	ND	ND	0.405	ND	ND	ND	0.558	ND	ND	ND	ND
F LIX-0	09/08/10	ND	ND	0.707	ND	ND	ND	1.42	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	ND	ND	0.256	ND	ND	ND	0.62	ND	1.97	ND	ND
PL-1	09/09/10	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	08/31/09	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FL-Z	09/09/10	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-3	5/13/02	ND	ND	NA	ND	ND	1.8	ND	NA	1.5	NA	NA
FL-S	08/31/09	ND	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
PL-3R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0.391	ND	ND
PL-4	5/13/02	ND	6.3	NA	8.6	ND	ND	0.92	NA	12.5	NA	NA
F L-4	09/01/09	ND	ND	ND	ND	ND	ND	0.37	ND	0.817	ND	ND
PL-4R	09/09/10	ND	ND	ND	ND	ND	ND	0.579	ND	0.19	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-5	08/31/09	ND	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-5		ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
1 2-0	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-6R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	0.246	ND	ND
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
PL-7	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
FL-7	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-8	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
1 L-0	09/01/09	ND	ND	ND	ND	ND	4.5	ND ND	ND	0.997	ND	ND
PL-8R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND
PL-9	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	2.8	NA	NA
1 12-3	09/02/09	ND	ND	ND	ND	ND	ND	ND ND	2.57	ND	ND	6.3
PL-9R	09/09/10	ND	ND	ND	ND	ND	ND	0.256	ND	1	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TC-1	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10-1	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TC 2	08/31/09	ND	NA ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	0.566	ND ND	NA ND
TC-2	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Sample ID Date Page Pa							Semi-volati	ile Organic (Compounds				
PER-4	Sample ID	Date	Indeno(1,2,3-cd)pyrene	Benzaldehyde	Naphthalene	Phenanthrene	Pyrene	Butyl benzyl phthalate	4-Chloroaniline	Carbazole	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene
PER-4	NJDEP	GWQS	0.2	NA	300	100	200	100	30	NA	75	600	600
PER-8 08907/10 ND ND 0.138 ND ND ND ND ND ND ND N		5/13/02											
Pers	PER-4												
PER-6		5/13/02	NA	NA	ND	ND	ND	2	ND	ND	ND	ND	ND
PER-6 ST1302	PFR-5		ND		ND	ND			ND	ND	NA		
Per-6 R		09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Per-6 R	PER-6	5/13/02	NΔ	NΔ	ND	ND	ND	1.0	ND	ND	ND	ND	ND
PER-6R	T LIX-0												
PER-7	PER-6R												
PER-7													
PER-8 9908/10 ND ND ND ND ND ND ND N	7												
PER-8 Fig. Fig.	PER-7												
PER-8	-	09/08/10	ND	ND	ND	עא	ND	ND	עא	טא	ND	ND	ND
PER-8		5/13/02	NΑ	NΑ	ND	ND	ND	2	ND	ND	ND	ND	ND
Pi	DED 0												
PL-1	PER-8												
PL-1													
PL-1										NA			
Description	PL-1												
PL-2		09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2		F/40/00	NIA	NIA	NI A	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
PL-3 D9/09/10	ŀ												
PL-3	PL-2												
PL-3R		00/00/10											
PL-3R	PL-3	5/13/02	NA	NA	ND	1.1	ND	ND	ND	ND	ND	ND	ND
PL-4R 5/13/02 NA NA 98.8 8.3 ND ND ND 25.6 ND													
PL-4R	PL-3R	09/09/10	ND	ND	0.442	0.62	ND	ND	ND	ND	ND	ND	ND
PL-4R	DI 4	E/12/02	NΙΛ	NΙΛ	00.0	0.2	ND	ND	ND	25.6	ND	ND	ND
PL-4R	FL-4												
PL-5 S/13/02 NA NA NA NA NA NA NA N	PL-4R												
PL-5 08/31/09	Ì	00,00,10											
PL-6		5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6	PL-5	08/31/09											
PL-6R			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6R	PI -6	5/13/02	NΔ	NΔ	ND	ND	ND	ND	0.64	ND	ND	ND	ND
PL-6R													
PL-7 09/01/09	PL-6R												
PL-7 09/01/09													
PL-8													
PL-8	PL-7												
PL-8R		09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-8R	PL-8	5/13/02	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
PL-9R	-												
PL-9R	PL-8R	09/09/10	ND	ND		2.1	ND	ND	ND	0.4	ND	ND	ND
PL-9R	DI -	E116 '22				4 .	N/S		4.	0 -			
PL-9R	PL-9												
TC-1	PI -QR												
TC-1	1 2 310	03/03/10	טאו	טאו	שאו	0.202	0.2	עאו	עאו	טאו	טאו	טאו	שויו
TC-1		5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
09/07/10 ND ND ND ND ND ND ND N	TC 4												
TC-2 08/31/09 ND ND ND ND ND ND ND ND NA NA NA	10-1		ND		ND	ND		ND		ND			
TC-2 08/31/09 ND ND ND ND ND ND ND ND NA NA NA													
	7												
מא אס	TC-2												
		09/07/10	טא	ND	ND	טא	ND	טאו	טא	טא	ND	ND	ND

						Semi	i-volatile Org	ganic Comp	ounds				
Sample ID	Date	3,3'-Dichlorobenzidine	Dibenzofuran	Di-n-butyl phthalate	Di-n-octyl phthalate	Diethyl phthalate	Dimethyl phthalate	bis(2-Ethylhexyl)phthalate	Isophorone	2-Methylnaphthalene	4-Nitroaniline	1,2,4-Trichlorobenzene	Total TIC, Semi-Volatile
NJDEP	GWQS	30	NA	NA	100	6,000	NA	3	40	30	NA	9	500
	5/13/02	NA ND	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND NA	0
PER-4	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.1 ND	ND ND	ND ND	ND ND	NA ND	251.5 0
	5/13/02	NA	ND	ND	ND	1.1	NA	2.2	NA	ND	NA	ND	8.9
PER-5	08/31/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	2 ND	ND ND	ND ND	ND ND	NA ND	0
	09/08/10	ND	IND	IND	ND	IND	ND	IND	IND	IND	IND	IND	0
PER-6	5/13/02	NA	ND	ND	ND	ND	NA	1	NA	ND	NA	ND	11.2
PER-6R	08/31/09 09/10/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	0
	5/13/02	NA	ND	ND	ND	ND	NA	2.8	NA	ND	NA	ND	9.4
PER-7	09/01/09	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	NA	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	ND	ND	ND	ND	NA	2.9	NA	ND	NA	ND	275
PER-8	09/01/09	ND	ND	ND	ND	ND	ND	1.3	ND	ND	ND	NA	529.4
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-1	09/02/09	ND NA	0.81	ND NA	ND NA	ND NA	ND NA	2.6	ND NA	ND NA	ND	NA NA	314.2
	09/09/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-2	08/31/09 09/09/10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	09/09/10	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
PL-3	5/13/02	NA	0.56	ND	3.8	ND	NA	2	NA	5.7	NA	ND	243.1
PL-3R	08/31/09 09/09/10	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA 2.1	NA ND	NA ND	NA 61.3
PL-4	5/13/02	NA ND	11	ND ND	ND ND	ND ND	NA ND	ND 477	NA ND	10.1	NA	ND NA	120.8
PL-4R	09/01/09 09/09/10	ND ND	0.56 ND	ND	ND ND	ND ND	ND ND	177 ND	ND ND	ND ND	ND ND	ND ND	26.5 985
	5/13/02 08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
PL-5	00/01/00	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PL-6	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	243.1
F L=0	09/02/09	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	NA NA	12.1
PL-6R	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3,131.7
	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	4.1
PL-7	09/01/09	ND	ND	ND	ND	ND	ND	204	ND	ND	ND	NA	0
	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
PL-8	5/13/02	NA	ND	ND	ND	ND	NA	ND	NA	ND	NA	ND	0
DI OD	09/01/09	ND	ND	ND	ND	ND	61.3	ND	27.5	ND	24.2	NA	848
PL-8R	09/09/10	ND	0.72	ND	ND	ND	ND	ND	ND	30.6	ND	ND	250.9
PL-9	5/13/02	NA	0.92	ND	ND	ND	NA	ND	NA	1.2	NA	ND	268.8
PL-9R	09/02/09 09/09/10	ND ND	1.4 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	55.4 0
1 2-310	03/03/10	IND	טאו	חאו	ואט	חאו	IND	טאו	ואט	ואט	ואט	IND	
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TC-1	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	0
	00/01/10				140	140	140		140		140	140	
	5/13/02	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA NA	NA 0
TC-2	08/31/09 09/07/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	0
	33,37,10			.,0	.,,,	.,0	.,,,		.,,,,	.,,,,	. 10	.,0	

			G	auging Da	ıta						Metals				
Sample ID	Date	TOC Elevation (ft)	Depth to Water (ft)	Depth to LNAPL (ft)	LNAPL Thickness (ft)	GW Elevation (ft)	Aluminum	Antimony	Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt
NJDEP	GWOS				_	_	200	6	3	6000	NA	4	NA	70	100
HODE	5/13/02	19.55	9.48	NP	NP	10.07	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA
TC-3	08/31/09 09/07/10	19.55 19.55	7.26 8.6	NP NP	NP NP	12.29	676 1,840	<6.0 <6.0	3.7 7.4	<200 <200	<1.0 <1.0	26 37.5	61,400 30,000	<10 <10	<50 <50
	5/13/02	10.82	2.81	2.78	0.03	8.01	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-1	09/01/09	10.82	2.44	NP	NP	8.38	893	<6.0	8.7	<200	<1.0	<3.0	11,800	<10	<50
I F-1	09/09/10	10.82	3.36	NP	NP	7.46	591	<6.0	20.3	<200	<1.0	<3.0	28,800	<10	<50
	5/13/02	10.10	_	_	_	-	NA	NA	NA	NA	NA	NA	NA	NA	NA
-	08/31/09	10.13 10.13	-	1.81	-	-	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TF-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	10.73	2.02	NP	NP	8.71	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/01/09	10.73	2.02	NP	NP	8.57	<200	<6.0	9.3	<200	<1.0	<3.0	9,890	<10	<50
TF-3	09/09/10	10.73	3.06	NP	NP	7.67	857	<6.0	22.2	<200	<1.0	<3.0	17,800	27.3	<50
	F/40/00						NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	N/A
	5/13/02 09/02/09	22.36	10.98	- NP	- NP	11.38	NA 1,120	NA <30	NA <15	NA <200	NA 2.8	NA 3.5	NA 194,000	NA <50	NA 76.3
TM-1	09/08/10	22.36	10.30	NP	NP	11.66	1,230	<6.0	<3.0	<200	5	<3.0	188,000	<10	67.6
	-//														
	5/13/02 09/02/09	22.45	10.16	- NP	- NP	12.29	NA 1,850	NA <6.0	NA 11.8	NA <200	NA <1.0	NA <3.0	NA 90,900	NA <10	NA <50
TM-2	09/08/10	22.45	11.24	NP	NP	11.21	<400	<12	<6.0	<400	<2.0	<6.0	<10,000	<20	<100
	5/13/02		_	_	_	_	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-3	09/02/09	22.5	10.35	NP	NP	12.15	225	<6.0	38.3	<200	<1.0	<3.0	48,900	<10	<50
TIVI-3	09/08/10	22.5	11.47	NP	NP	11.03	<200	<6.0	48.8	<200	<1.0	<3.0	56,500	<10	<50
	5/13/02	_	_	_	_	_	NA	NA	NA	NA	NA	NA	NA	NA	NA
TN4.4	09/02/09	21.14	8.36	NP	NP	12.78	<200	<6.0	26.2	<200	<1.0	<3.0	12,900	<10	<50
TM-4	09/08/10	21.14	9.68	NP	NP	11.46	913	<6.0	47.5	<200	<1.0	<3.0	10,500	<10	<50
	5/13/02	-	-	_	-	-	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	18.47	8.28	NP	NP	10.19	1,210	<6.0	<3.0	<200	<1.0	<3.0	18,500	<10	<50
TIVI-3	09/10/10	18.47	8.26	NP	NP	10.21	1,010	<6.0	<3.0	<200	<5.0	<15	383,000	<50	<50
	5/13/02	17.68	-	-	-	-	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-6	08/31/09	17.68	6.18	6.2	0.02	11.5	NA	NA	NA	NA	NA	NA	NA	NA	NA
1101-0	09/10/10	17.68	7.25	7.2	0.02	10.43	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02		_	_	_	 _	NA	NA	NA	NA	NA	NA	NA	NA	NA
TN4 7	09/02/09	17.03	7	NP	NP	10.03	<200	<6.0	5.2	<200	<1.0	<3.0	121,000	<10	<50
TM-7	09/10/10	17.03	7.7	NP	NP	9.33	<200	<6.0	3.1	<200	<2.0	<3.0	276,000	<10	<50
	5/13/02	15.56	6.46	NP	NP	9.1	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-1	J/ 13/UZ	10.00		II Paved O		9.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2	E/12/02	14.66	E 7	E 44	0.20	0.00	NIA	NI A	NIA	NIA	NA	NIA	NIA	NIA	NIA.
IN-Z	5/13/02 08/31/09	14.66 14.66	5.7 4.12	5.41 4.14	0.29	8.96 10.54	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2R	09/07/10	14.66	5.04	NP	NP	9.62	323	<6.0	9.2	1,400	<1.0	<3.0	214,000	<10	<50
TR-3	5/13/02	12.96	4.48	NP	NP	8.48	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	12.93	3.34	NP	NP	9.59	13,000	<6.0	9.8	361	<1.0	<3.0	96,000	39.9	<50
TR-3R			Co	uld Not Loc	cate	1	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	14.71	5	NP	NP	9.71	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-4	08/31/09	14.71	4.73	NP	NP	9.98	1,010	<6.0	4.5	890	<1.0	<3.0	391,000	<10	<50
111-4	09/10/10	14.71	5	NP	NP	9.71	18,700	<6.0	73.2	568	<3.0	6.5	340,000	18.2	<50
													l .		

NA - Not Analyzed

	on Readin	<u></u>						Me	tals						
Sample ID	Date	Copper	Iron	Lead	Magnesium	Manganese	Mercury	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
NJDEP	GWOS	1,300	300	5	NA	50	2	100	NA	40	40	50,000	2	60	2,000
NODE	5/13/02	NA	15,800	NA NA	NA	2,580	NA	NA	NA	NA	NA	23,600	NA	NA	NA
TO 0	08/31/09	156	21,300	42.5	10,400	270	<0.20	<10	<10,000	<10	<10	16,800	<2.0	<50	77.2
TC-3	09/07/10	148	9,190	40.5	9,140	1,310	<0.20	28.1	<10,000	<10	<10	18,600	<2.0	<50	89
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-1	09/01/09	22.3	5,050	5.4	<5,000	47	<0.20	<10	<10,000	<10	<10	28,900	<2.0	<50	<20
	09/09/10	34.7	27,100	6	<5,000	202	<0.20	<10	<10,000	<10	<10	23,500	<2.0	<50	29.9
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-2	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
17-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA -10	5,810	NA -2.0	NA 5.220	52	NA -0.20	NA -10	NA -10.000	NA -10	NA -10	10,900	NA -2.0	NA -FO	NA -20
TF-3	09/01/09 09/09/10	<10 103	4,800 18,400	<3.0 12.5	5,220 6,060	25 80	<0.20 <0.20	<10 18.6	<10,000 <10,000	<10 <10	<10 <10	65,900 47,300	<2.0 <2.0	<50 <50	<20 97.4
	03/03/10	100	10,400	12.0	0,000	00	\U.ZU	10.0	×10,000	\10	\10	77,300	\ ∠ .U	\J 0	37.4
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-1	09/02/09	13.3	2,290	<15	106,000	33,400	<0.20	223	<10,000	<50	<10	491,000	<10	<50	144
	09/08/10	<10	1,760	<9.0	101,000	32,400	<0.20	206	<10,000	<30	<10	479,000	<10	<50	142
	5/40/00	N.1.4	N. A.		110		N.1.4	110		N14	N 1 A	N. A.	A.1.A	N.1.A	110
	5/13/02 09/02/09	NA <10	NA 101,000	NA <3.0	NA 47,600	NA 5,890	NA <0.20	NA <10	NA 11,600	NA <10	NA <10	NA 118,000	NA <2.0	NA <50	NA 33.4
TM-2	09/02/09	<20	<200	<6.0	<10,000	<30	<0.20	<20	<20,000	<20	<20	<20,000	<4.0	<100	<40
	00,00,10	120	1200	40.0	110,000	100	10.20	120	420,000	120	120	420,000	11.0	1100	1.0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-3	09/02/09	11.1	163,000	<3.0	19,300	4,920	<0.20	<10	18,100	<10	<10	58,100	<2.0	<50	<20
	09/08/10	<10	194,000	<3.0	22,400	5,220	<0.20	<10	20,000	<10	<10	76,500	<2.0	<50	<20
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	<10	63,500	<3.0	5,240	1,370	<0.20	<10	<10,000	<10	<10	16,800	<2.0	<50	<20
TM-4	09/08/10	27.7	93,800	5	<5,000	1,180	<0.20	<10	<10,000	<10	<10	<10,000	<2.0	<50	43.3
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	21.9	2,520	4.4	8,010	5,610	<0.20	<10	<10,000	<10	<10	48,900	<2.0	<50	<20
	09/10/10	36.4	1,180	<15	259,000	61,900	<0.20	35.6	<10,000	<50	<10	1,400,000	<10	<50	<20
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-6	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
i ivi-o	09/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02 09/02/09	NA 40	NA 40.600	NA	NA 40.500	NA 44.000	NA 0.00	NA 00	NA 10.000	NA 00	NA 40	NA 427.000	NA	NA 50	NA
TM-7	09/02/09	<10 <10	18,600 8,510	<3.0 <3.0	46,500 88,300	11,900 16,000	<0.20 <0.20	20 44.5	<10,000 <10,000	<20 <10	<10 <10	137,000 201,000	<4.0 <4.0	<50 <50	<20 33.5
	00/10/10	V10	0,010	νο.υ	00,000	10,000	₹0.20	77.0	<10,000	V10	×10	201,000	\ 4 .0	\\ 00	33.3
	5/13/02	NA	16,000	3.7	NA	156	NA	NA	NA	NA	NA	27,100	NA	NA	NA
TR-1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TD -	E116 '22														
TR-2	5/13/02 08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2R	09/07/10	<10	10,000	<3.0	77,500	8,530	<0.20	<10	30,900	<10	<10	324,000	<2.0	<50	<20
	33,31,10	-10	. 5,555	-0.0	,000	5,500	-0.20	-10	55,555	-10	-10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-50	
TR-3	5/13/02	NA	8,810	NA	NA	52	NA	NA	NA	NA	NA	10,900	NA	NA	NA
	09/02/09	46.3	26,200	13.5	18,100	2,390	<0.20	25.3	<10,000	<10	<10	61,200	<2.0	<50	57.4
TR-3R		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	21,600	30.1	NA	11,200	NA	NA	NA	NA	NA	163,000	NA	NA	NA
TD :	08/31/09	28.9	4,100	30.1	129,000	20,000	<0.20	<10	<10,000	<10	<10	298,000	<2.0	<50	30.8
TR-4	09/10/10	54	11,200	81.8	104,000	20,100	<0.20	55.8	<10,000	<10	<10	246,000	<6.0	95.5	207
					,				,						
	•			•											

			Jersey			Vo	latile Organ	ic Compour	nds				
Sample ID	Date	Acetone	Benzene	2-Butanone (MEK)	Chlorobenzene	Chloroform	Chloroethane	Cyclohexane	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluoromethane	1,1-Dichloroethane
NJDEP	GWQS	6,000	1	300	50	70	5	NA	600	600	75	1,000	50
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TC-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
100	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	F/40/00	NIA	NIA	NIA	NIA	NIA	ND	NIA	NIA	NIA	NIA	NIA	NIA
	5/13/02 09/01/09	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND
TF-1	09/09/10	ND	ND	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND
	00,00,10		.1.5	.,,,	.1.5			.1.5		.,,			. 115
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
TF-2	08/31/09	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	12.5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TE 2	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TF-3	09/09/10	ND	6.2	ND	0.68	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
TM-1	09/02/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	09/00/10	IND	ND	ND	IND	IND	ND	IND	IND	IND	ND	ND	IND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
TM-2	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
T14.0	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TM-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
TM-4	09/02/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	09/06/10	ND	ND	ND	ND	ND	ND	ND	IND	IND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
0	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
	08/31/09	NA NA	NA NA	NA	NA NA	NA NA	ND	NA NA	NA NA	NA	NA NA	NA NA	NA
TM-6	09/10/10	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA OF 4	NA NB	NA	NA	ND	NA 17.0	NA	NA	NA	NA	NA
TM-7	09/02/09 09/10/10	ND ND	35.1 87.2	ND ND	1.1 1.6	ND ND	ND ND	17.2 70.2	ND ND	ND ND	ND ND	ND ND	ND ND
	03/10/10	טאו	01.2	שאו	1.0	שאו	טויו	10.2	ואט	ואט	טאו	140	140
	5/13/02	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	1.6
TR-1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TD 2	E/12/02	NIA	N/A	NI A	N/A	NIA.	NI A	N/A	NI A	NIA	NIA	NI A	N/A
TR-2	5/13/02 08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2R	09/07/10	ND	38,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TR-3	5/13/02	ND	2,120	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TD 2D	09/02/09	ND NA	1,400	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND	ND	ND NA
TR-3R		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	ND	1,630	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
TR-4	08/31/09	ND	8,750	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1117-4	09/10/10	ND	2,260	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Semple 10 Dete								Vo	latile Organ	ic Compou	nds					
TC.3 Si302 ND	Sample ID	Date	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,4-Dioxane	Ethylbenzene	Freon 113	Isopropylbenzene	Methylcyclohexane	Methyl Tert Butyl Ether (MTBE)	Tert Butyl Alcohol	Methylene chloride	Tetrachloroethene
TC.3 Si302 ND	NJDEP	GWQS	2	1	70	100	1	10	700	NΔ	NΔ	NΔ	70	100	3	1
TC-3 0831/99 ND																
FF-1	TO 0															
TF-1	10-3															
TF-1																
TH-1																
TF-2 \$61302	TF-1															
TF-2 MS3109		09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	13.4	0.4	ND	13.2	ND	ND
TF-2 MS3109		5/13/02	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΙΔ	NΔ	NΔ	NΔ	NΔ	NΔ
MD																
TF-3	IF-2															
TF-3																
17-3 090910																
TM-1	TF-3															
TM-1		09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	1/0	ND	ND
TM-1		5/13/02	NΑ	NΑ	NΑ	NΑ	NΑ	NΑ	NΔ	NΑ	NΔ	NΑ	NΑ	NΑ	NΑ	NΑ
Main	T14.4															
TM-2	I M-1															
TM-2																
10 10 10 10 10 10 10 10																
18	TM-2															
TM-3 099/02/99 ND ND ND ND ND ND ND		09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	0.6
TM-3 099/02/99 ND ND ND ND ND ND ND		5/13/02	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΙΔ	NΔ	NΔ	NΔ	NΔ	NΔ	NΔ
100 100	T14.0															
TM-4 09/02/09 ND ND ND ND ND ND ND N	TM-3															
TM-4 09/02/09 ND ND ND ND ND ND ND N																
100-4 09/08/10 ND ND ND ND ND ND ND N																
TM-5	TM-4															
TM-5 09/02/09 ND ND ND ND ND ND ND N		09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TM-5 09/02/09 ND ND ND ND ND ND ND N		5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ND ND ND ND ND ND ND ND	TM 5															
TM-6 08/31/09	G-Ivi i			ND	ND				ND	ND				ND	ND	
TM-6 08/31/09																
TR-2																
TM-7 5/13/02	TM-6															
TM-7 09/02/09		03/10/10	14/	14/7	14/7	14/1	14/1	147	14/7	14/1	14/7	14/7	14/7	14/7	14/1	147
TM-7 09/02/09		5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ND ND ND ND ND ND ND ND	TM-7	09/02/09	ND	ND	ND	ND	ND	ND	12	ND	5.5	16	34.3	180	ND	ND
TR-1		09/10/10	ND	ND	ND	ND	ND	ND	26.5	ND	18.9	71.8	21.9	ND	ND	ND
TR-1		E/40/00	ND	E ^	ND	ND	ND	NI A	ND	NIA.	NI A	N1A	N.D.	NI A	ND	ND
TR-2 5/13/02 NA	TR-1	5/13/02														
TR-2R	118-1		INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA	INA
TR-2R	TR-2	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-3		08/31/09	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
TR-3R	TR-2R	09/07/10	ND	ND	ND	ND	ND	ND	418,000	ND	42,800	8,540	1,540,000	ND	ND	ND
TR-3R	-	=116.55														
TR-3R	IR-3															
TR-4	TR-3R	09/02/09														
TR-4 08/31/09 ND	010		14/3	14/7	14/7	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/1	14/7	11/1	14/5
TR-4 08/31/09 ND		5/13/02	ND	ND	ND	ND	ND	NA	ND	NA	NA	NA	1,280,000	NA	ND	ND
09/10/10 ND	TR-4	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2,070,000	295,000		ND
	113-4	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1,580,000	ND	ND	ND

			ociocy		Volatile	Organic Cor	mpounds			
Sample ID	Date	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene	Vinyl chloride	Xylene (total)	Total TIC, Volatile
NJDEP	GWQS	600	NA	9	30	3	1	1	1,000	500
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	0
TC-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA
TE 4	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	668
TF-1	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	738
	5/13/02	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
TF-2	08/31/09 ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND
	IND	טאו	שאו	חאו	חאו	ואט	עאו	טאו	טאו	טאו
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	25.5
TF-3	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0
11 0	09/09/10	ND	ND	ND	ND	ND	ND	ND	1.6	8.4
	E/42/02	NIA	NIA	NIA	NIA	NIA	NIA	NΙΔ	NΙΔ	NIA
	5/13/02 09/02/09	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA 0
TM-1	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-2	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA
TMO	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0
TM-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA ND	NA	NA	NA	NA	NA	NA	NA 0
TM-4	09/02/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0
	09/06/10	ND	ND	ND	IND	IND	IND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	0
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA
T1.	08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TM-6	09/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA ND	NA	NA	NA	NA	NA	NA 0	NA 007.0
TM-7	09/02/09 09/10/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	9 17.2	227.8 649
	55, 10, 10	140	110	140	140	140	140	140	11.2	040
	5/13/02	ND	NA	NA	1.3	ND	ND	ND	ND	0
TR-1		NA	NA	NA	NA	NA	NA	NA	NA	NA
TD A	E (40 /00	N/A	NIA.	N/A	N/A	N/ A	N/A	N14	h14	N/A
TR-2	5/13/02 08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2R	09/07/10	405,000	ND	ND ND	ND ND	ND ND	ND ND	ND	2,390,000	3,960,000
		,							, ,	-,,
TR-3	5/13/02	ND	NA	NA	ND	ND	8.4	ND	ND	157
TD 00	09/02/09	30.9	ND	ND	ND	ND	ND	ND	61	2,557
TR-3R		NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	ND	NA	NA	ND	ND	ND	ND	ND	0
TD 4	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	16,000
TR-4	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	0

						Semi-volati	ile Organic (Compounds				
Sample ID	Date	Pentachlorophenol	4-Chloro-3-methyl phenol	Acetophenone	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene
NJDEP	GWQS	0.3	NA	700	400	100	2,000	0.1	0.1	0.2	100	0.5
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TC-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10-3	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TF-1	09/01/09 09/09/10	ND ND	ND ND	ND ND	ND 3.45	ND ND	ND ND	ND 1.4	ND 0.518	ND ND	ND ND	ND ND
	09/09/10	ND	ND	ND	3.45	ND	ND	1.4	0.516	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TF-2	08/31/09	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
117-2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	ND	NA	ND	NA	NA	NA	NA	NA
TF-3	09/01/09 09/09/10	ND	ND ND	ND ND	0.622	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
ĺ	09/09/10	ND	טאו	טאו	ND	טאו	טאו	ND	ND	טאו	ואט	ואט
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-1	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
I IVI- I	09/08/10	ND	ND	ND	ND	ND	0.108	0.208	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-2	09/02/09 09/08/10	ND	ND ND	ND	ND ND	ND ND	ND 0.464	ND 0.22	ND ND	ND ND	ND ND	ND ND
	09/06/10	ND	ND	ND	ND	ND	0.164	0.22	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-3	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 101-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-4	09/02/09	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1 IVI-0	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02 08/31/09	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TM-6	08/31/09	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	33, 10, 10	14/1	14/1	140	14/7	14/1	14/1	14/1	14/1	14/1	14/1	14/7
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TM-7	09/02/09	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND
	09/10/10	ND	ND	ND	0.222	ND	ND	ND	ND	ND	ND	ND
	5/12/02	NIA	NIA	ND	NIA	NIA	NIA	NIA	NA	NIA	NIA	NΙΛ
TR-1	5/13/02	NA NA	NA NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		14/	14/7	14/7	14//	14/1	14/7	14/7	14/	14/7	14/7	1477
TR-2	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
-	08/31/09	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TR-2R	09/07/10	ND	ND	ND	6.8	ND	3.39	1.07	0.437	0.497	0.184	0.413
TD 0	E/40/00	N/A	N1A	ND	N/A	N/A	N/A	N1A	N/A	N/A	N1 A	N1 A
TR-3	5/13/02 09/02/09	NA ND	NA ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND
TR-3R	09/02/09	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		1471	14/1	110	10/	1471	10/1	107	1471	101	14/1	14/1
	5/13/02	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA
TR-4	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
¬	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					l		l		l		1	1

						Semi-volati	le Organic (Compounds				
Sample ID	Date	1,1'-Biphenyl	2,4-Dimethylphenol	Chrysene	2-Methylphenol	3&4-Methylphenol	Phenol	Fluoranthene	2,4,5-Trichlorophenol	Fluorene	2,4,6-Trichlorophenol	Hexachlorobenzene
NJDEP	GWQS	400	100	5	NA	NA	2,000	300	700	300	20	0.02
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TC-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TE 4	09/01/09	ND	ND	1.45	ND	ND	ND	ND	ND	ND	ND	ND
TF-1	09/09/10	ND	ND	3.03	ND	ND	ND	0.878	ND	8.7	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-2	08/31/09	ND	NA	NA ND	NA ND	NA ND	NA	NA ND	NA ND	NA ND	NA	NA ND
	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	ND	NA	ND	ND	ND	ND	NA	ND	NA	NA
TF-3	09/01/09	ND	ND	ND	ND	ND	ND	ND	ND	0.131	ND	ND
11-3	09/09/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA ND	NA	NA	NA	NA	NA	NA	NA
TM-1	09/02/09 09/08/10	ND ND	ND ND	ND 0.0913	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	03/00/10	ND	IND	0.0313	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-2	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	0.0774	ND	ND	ND	0.208	ND	0.194	ND	ND
	5/13/02	ND	NA	NΙΛ	NA	NA	NA	NA	NΙΛ	NA	NA	NA
	09/02/09	ND	ND	NA ND	ND	ND ND	ND	ND ND	NA ND	ND ND	ND	ND
TM-3	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-4	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
C-IVI I	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	F/40/00	ND	h 1 A	N/A	NI A	N/A	N/ A	N/A	N14	N/A	N/A	h 1 A
	5/13/02 08/31/09	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TM-6	09/10/10	ND	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-7	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	1.26	ND	ND
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	0.423	ND	ND
	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-1	5, 15/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-2	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TD_2D	08/31/09	ND 12	NA	NA 0.653	NA ND	NA ND	NA	NA 2.6	NA ND	NA 0.2	NA	NA
TR-2R	09/07/10	13	ND	0.653	ND	ND	ND	3.6	ND	9.3	ND	ND
TR-3	5/13/02	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	0.112	ND	ND
TR-3R		ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	F/46/22	N.				h//	h/ -				h/ *	
	5/13/02	ND	NA	NA ND	NA ND	NA ND	NA	NA ND	NA ND	NA ND	NA	NA
TR-4	08/31/09 09/10/10	ND 0.49	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

						Semi-volati	ile Organic	Compounds				
Sample ID	Date	Indeno(1,2,3-cd)pyrene	Benzaldehyde	Naphthalene	Phenanthrene	Pyrene	Butyl benzyl phthalate	4-Chloroaniline	Carbazole	1,4-Dichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene
NJDEP	GWQS	0.2	NA	300	100	200	100	30	NA	75	600	600
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TC-3	08/31/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
10-3	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-1	09/01/09	ND	ND	ND	ND 0.0	1.31	ND	ND	ND	NA ND	NA ND	NA ND
	09/09/10	ND	ND	ND	8.6	2.81	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TF-2	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
11 -2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
					.,-			.,-				
	5/13/02	NA ND	NA ND	ND	ND ND	ND	2.6	ND ND	ND	ND NA	ND NA	ND NA
TF-3	09/01/09 09/09/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	NA ND
	03/03/10	IND	IND	IND	ND	IND	ND	IND	ND	IND	IND	IND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-1	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/08/10	ND	ND	ND	0.126	ND	ND	ND	ND	ND	ND	ND
	5/40/00	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA	NIA
	5/13/02 09/02/09	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA
TM-2	09/08/10	ND	ND	ND	0.768	0.183	ND	ND	ND	ND	ND ND	ND ND
	00,00,10	- 115			0.700	0.100						
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-3	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
0	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	E/42/02	NIA	NIA	NΙΔ	NIA	NIA	NΙΔ	NIA	NΙΔ	NIA	NΙΛ	NIA
	5/13/02 09/02/09	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA
TM-4	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-5	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-6	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
I IVI-D	09/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA 0.50	NA NA	NA NA	NA NA
TM-7	09/02/09 09/10/10	ND ND	ND ND	ND 1.25	ND 0.209	ND ND	ND ND	ND ND	0.56 ND	NA ND	NA ND	NA ND
	55, 10, 10	140	140	1.20	0.200	140	110	140	140	140	140	140
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TD A	F/40/00	N/A	N:4	N/A	N/ A	N/A	N/A	N/A	N/A	N/A	h 1 4	N14
TR-2	5/13/02 08/31/09	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TR-2R	08/31/09	0.165	NA ND	321	NA ND	2.86	NA ND	NA ND	14.9	NA ND	NA ND	NA ND
	33,31710	5.100	.,,,		.,,,,		.,,,,	.,,,	. 1.0		.,,,,	.,,,
TR-3	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	ND	ND	0.139	ND	ND	ND	ND	ND	NA	NA	NA
TR-3R		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	E/12/02	NIA	NIA	NIA	NIA	NΙΛ	NIA	NA	NIA	NIA	NIA	NIA
	5/13/02 08/31/09	NA ND	NA ND	NA 3.42	NA ND	NA ND	NA ND	NA ND	0.67	NA NA	NA NA	NA NA
	33,31,00											
TR-4	09/10/10	ND	ND	33.7	0.14	ND	ND	ND	ND	ND	ND	ND

						Oeiiii	-volatile Oit	ganic Comp	ounus				
Sample ID	Date	3,3'-Dichlorobenzidine	Dibenzofuran	Di-n-butyl phthalate	Di-n-octyl phthalate	Diethyl phthalate	Dimethyl phthalate	bis(2-Ethylhexyl)phthalate	Isophorone	2-Methylnaphthalene	4-Nitroaniline	1,2,4-Trichlorobenzene	Total TIC, Semi-Volatile
NJDEP	GWQS	30	NA	NA	100	6,000	NA	3	40	30	NA	9	500
TC-3	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	NA	0
	09/07/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0
TF-1	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/01/09	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	NA	616
	09/09/10	ND	1.5	ND	ND	ND	ND	15.3	ND	24.6	ND	ND	1,078
TF-2	5/13/02 08/31/09 ND	NA NA ND	NA NA	NA NA ND	NA NA	NA NA ND	NA NA	NA NA ND	NA NA ND	NA NA ND	NA NA	NA NA ND	NA NA
TF-3	5/13/02 09/01/09	NA ND	ND ND ND	ND ND	ND ND ND	ND ND	ND NA ND	4.9 2.9	NA ND	ND ND	ND NA ND	ND NA	32.1 21
	09/09/10	ND	ND	ND	ND	ND	ND	46.1	ND	ND	ND	ND	19
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	24.2
TM-1	09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	4.1 NA
TM-2	09/02/09 09/08/10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	94.9 ND	ND ND	ND ND	ND ND	NA ND	0
TM-3	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	4.1	ND	ND	ND	NA	0
	09/08/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	18
TM-4	5/13/02 09/02/09 09/08/10	NA ND ND	NA ND ND	NA ND ND	NA ND ND	NA ND ND	NA ND ND	NA 4.3 5.2	NA ND ND	NA ND ND	NA ND ND	NA NA ND	NA 72.5
TM-5	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/02/09	ND	ND	ND	ND	ND	ND	3.7	ND	ND	ND	NA	0
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	24.3
TM-6	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1181-0	09/10/10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TM-7	09/02/09	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	NA	151.3
	09/10/10	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	42.6
	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-1	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-2		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
TR-2R	08/31/09	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	09/07/10	ND	4.4	ND	ND	ND	ND	2.1	ND	211	ND	ND	5,274
TR-3 TR-3R	5/13/02 09/02/09	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA ND NA	NA 8.2 NA	NA NA NA	NA 174.3 NA
TR-4	5/13/02	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	08/31/09	ND	ND	ND	ND	ND	ND	1.2	ND	ND	ND	NA	757
	09/10/10	ND	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	4,206

Appendix A

Well Search for

CASE NAME: Hess Port Reading Refinery PROGRAM INTEREST (PI) ID # : 006148

SPREADSHEET SUBMISSION DATE: November 22, 2010

No Domestic, Public Supply, Non-public, Industrial, or Irrigation wells were identified.

Appendix B

New Jersey Department of Environmental Protection

Site Remediation Program

POTABLE WELL/INDOOR AIR SAMPLING **NOTIFICATION FORM**

☐ Non-LSRP (Existing Cases) ☐ LSRP ☐ Subsurface Evaluator

Date Stamp

	,	(For Departn	nent use only)
SECTION A. SITE NAME AND LOCATION	I		
Site Name:			
List all AKAs:			
Street Address:			
Municipality:			
County:	Zip Code:		
Mailing Address if different than street addre	ss:		
Program Interest (PI) Number(s):	Case Trackir	ng Number(s):	
SECTION B. NJDEP CASE MANAGER Do you have an assigned Case Manager? If "Yes," please list the Case Manager:			🗌 Yes 🔲 No
SECTION C. POTABLE WELL/INDOOR AI Complete and attach the Potable Well/Indoo	IR SAMPLING NOTIFICATION SF	PREADSHEET	
SECTION D. PERSON RESPONSIBLE FO	R CONDUCTING THE REMEDIAT	TION INFORMATION AND	CERTIFICATION
Full Legal Name of the Person Responsible	for Conducting the Remediation:		
Representative First Name:	Representative L	ast Name:	
Title:			
Phone Number:	Ext:	Fax:	
Mailing Address:			
City/Town:	State:	Zip Code:	
Email Address:			
Developer Certification Included $\ \square$ or Filed	Da	ite of Filing	
This certification shall be signed by the person in accordance with Administrative Requirement			
I certify under penalty of law that I have pers including all attached documents, and that be the information, to the best of my knowledge aware that there are significant civil penalties am committing a crime of the fourth degree is aware that if I knowingly direct or authorize to	ased on my inquiry of those individe, I believe that the submitted informs of for knowingly submitting false, inc of I make a written false statement w	luals immediately responsib nation is true, accurate and accurate or incomplete infol which I do not believe to be	ole for obtaining complete. I am rmation and that I true. I am also
Signature:	Date:		
Name/Title:	Changes §	Since Last Submittal 🗌	

SECTION E. NON-LSRP SITE REMEDIATION PROFES	SIONAL STATEMENT				
First Name:	Last Name:				
Phone Number:	Ext:	Fax:			
Mailing Address:					
City/Town:	State:	Zip Code:			
Email Address:					
I believe that the information contained herein, and including	ng all attached docume	ents, is true, accurate and complete.			
Signature:		Date:			
Name/Title:		_			
Company Name:		_			

Submit this form to the assigned case manager. If there is no assigned case manager, submit this form to:

Bureau of Case Assignment & Initial Notice New Jersey Department of Environmental Protection Site Remediation Program 401 East State Street, PO Box 434 Trenton, NJ 08625

Potable Well/Indoor Air Sampling Notification Spreadsheet

Page 1 of 1

Case Name: Hess - Port Reading Refinery			Spreadsheet Revision Date: 11/18/2010						
Case Addres	s: 750 Cliff I	Road			Program Interes	t #: 6148			
Case Municipalit	ty: Woodbrid	ge			Cour	nty: Middlesex			
LSRP First Nam	e: William				LSRP Last Nar	ne: Groeling			
LSRP Numbe	er:			509880		·			
									Scheduled
									Sample
								Zip	Collection
Sample Type	Block	Lot	Location Type	Name	Address	Municipality	County	Code	Date
Indoor Air	756.02	1	Other	Port Reading Refinery	750 Cliff Road	Woodbridge	Middlesex	7077	11/10/10

New Jersey Department of Environmental ProtectionSite Remediation Program

FULL LABORATORY DATA DELIVERABLES FORM

☐ Non-LSRP (Existing Cases) ☐ LSRP ☐ Subsurface Evaluator

Date Stamp

	(For Department use only)
SECTION A. SITE NAME AND LOCATION	
Site Name:	
List all AKAs:	
Street Address:	
Municipality: (Towns	ship, Boro or City)
County: Zip Coo	de:
Mailing Address if different than street address:	
Program Interest (PI) Number(s): Ca	se Tracking Number(s):
SECTION B. NJDEP CASE MANAGER Do you have an assigned Case Manager?	
SECTION C. REMEDIAL PHASE	
☐ Immediate Environmental Concern ☐ Preliminary Assessment	ent Report
<u> </u>	n/Remedial Action Work Plan
Remedial Action Report Response Action Outc	come
SECTION D. Matrix Type/Analysis and Number of Samples Description: Description:	
Analytical Method(s)	
☐ Indoor Air # of samples:	
Analytical Method	
☐ Polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans	# of samples:
Analytical Method	
☐ Hexavalent chromium soil sample # of samples:	
Analytical Method	
Other	·
Analytical Method	
Other	•
Analytical Method	
Analytical Method	•
•	
SECTION E. GENERAL 1. Was a full laboratory data deliverables package provided?	Yes No
Was a certified laboratory(s) used for the analyses? Provide name of laboratory(s):	
Were data summaries provided for all samples?	
Were electronic deliverables submitted?	
5. For air sample data, were the TO-15 Conversion Tables (hit-lists) appropriate Excel format pursuant to the VIG?	

Se	ection F. Data Quality Assurance/Quality Control	
1.	Were the appropriate sample preservation requirements met?	☐ No
2.	Were appropriate sample holding times (for both extraction/sample preparation and analysis) met? ☐ Yes If "No," provide a brief explanation.	□ No
3.	Were the samples diluted?	□No
4.	If applicable, did sample dilutions result in elevated reporting limits that exceed applicable standards? \square Yes If "Yes," list the affected samples.	□ No
5.	Were any applicable standards exceeded for any samples?	□No
6.	Were the laboratory reporting limits below the applicable remediation standards/criteria required for the site?	□No
7.	Were qualifications noted in the non-conformance summary? ☐ Yes Provide a brief explanation.	□No
	Were qualified data used?	□ No □ No

10.Were rejected data used?		Yes	☐ No
If "Yes," please indicate reasons rejected data w	ere used:		
☐ For Hex Chrome, data were rejected because ☐ Data were rejected due to missing deliverable	•	y was less than 50%.	
☐ Data were rejected but an applicable standar		exists.	
☐ Data were rejected in an early phase of a ren	nediation; howe	ever, additional sampling and analysis	
are scheduled to be performed. Other reasons not noted directly above. Expl	ain·		
	airi.		
11.Were the quality control criteria associated with	the compounds	of concern at the site met? \square Yes	☐ No
12.Were the QC Summary Forms reviewed?		Yes	☐ No
13.Surrogate recoveries acceptable		Yes	\square No
14.Internal Standards acceptable		Yes	☐ No
15.MS/MSDs acceptable		Yes	☐ No
16.Tune summaries acceptable		Yes	☐ No
17.Calibration summaries acceptable		Yes	☐ No
18.Serial dilutions acceptable		□ Yes	☐ No
19.Inorganic duplicates acceptable		□ Yes	☐ No
20.LCS recovery acceptable			☐ No
21.Other QC acceptable? Provide a brief explanati	on if applicable		
SECTION G. PERSON RESPONSIBLE FOR CON			CATION
Full Legal Name of the Person Responsible for Cor	•		
Representative First Name:	Repre	esentative Last Name:	
Title:			
		Fax:	
Mailing Address:			
	State:	Zip Code:	
Email Address:			
Developer Certification Included or Filed			·c· (·
This certification shall be signed by the person resp in accordance with Administrative Requirements for			
I certify under penalty of law that I have personally			- (-)
including all attached documents, and that based of			
the information, to the best of my knowledge, I believely aware that there are significant civil penalties for kn			
am committing a crime of the fourth degree if I make	e a written false	statement which I do not believe to be true. I am	
aware that if I knowingly direct or authorize the viola	•		
Signature:		Date:	
Name/Title:		No Changes Since Last Submittal	

SECTION H. NON-LSRP SITE REMEDIATION PROFESSI	ONAL STATEMENT	
First Name:	Last Name:	
Phone Number: Ext	:	Fax:
Mailing Address:		
City/Town: Sta	te:	Zip Code:
Email Address:		
I believe that the information contained herein, and including	all attached documents,	is true, accurate and complete.
Signature:	Date:	
Name/Title:	No C	hanges Since Last Submittal 🗌
Company Name:		

Submit this form to the assigned case manager. If there is no assigned case manager, submit this form to:

Bureau of Case Assignment & Initial Notice New Jersey Department of Environmental Protection Site Remediation Program 401 East State Street, PO Box 434 Trenton, NJ 08625 Sample - A1 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Results in ppby	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	2,2	5.2
Benzene	71-43-2	78.11	ND (0,028)	ND (0.062)
Bromodichloromethane	75-27-4	163.8	· · · · · · · · · · · · · · · · · · ·	0.7
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0.025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane	75-00-3		ND (0.026)	ND (0.13)
Chloroform	67-66-3	119.4	0.59	1.2
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0.035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1	76.53	ND (0.032) 0.098 J	ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	0.098.0	0.62 J
Cyclohexane	110-82-7	84.16	ND (0.042)	ND (0.14)
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane	75-71-8		ND (0.040)	ND (0.14)
1,1-Dichloroethane	75-34-3	98.96	0.55	2.7
1,2-Dichloroethane	107-06-2	98.96	ND (0.082)	ND (0.70)
1,1-Dichloroethene	75-35-4	96.94	ND (0.035)	ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	ND (0.031)	ND (0.12)
1,2-Dichloroethene (trans)	156-60-5	96.94	ND (0.022)	ND (0.10)
1,2-Dichloropropane	78-87-5	113	ND (0.025)	ND (0.15)

Sample - A1 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Resuits in ppby	Generates Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114	76-14-2		ND (0.079)	ND (0.36)
Ethylbenzene 4-Ethyltoluene (p-Ethyltoluene)	100-41-4 622-96-8	106.2 120.2		10 0.48 J
n-Heptane	142-82-5	100.2	ND (0.077)	ND (0.28)
Hexachlorobutadiene	87-68-3	260.8	ND (0.024)	ND (0.12)
n-Hexane	110-54-3	86.17	ND (0.026)	ND (0.20)
Methylene chloride	75-09-2		ND (0.029)	ND (0.20)
4-Methyl-2-pentanone (MIBK)	108-10-1	100.2	0.19 ป	0.78 J
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	ND (0.060)	ND (0.64)
Styrene	100-42-5	104.1	0.29	1
Tertiary butyl alcohol (TBA)	75-65-0		ND (0.043)	ND (0.18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9		1.1
Tetrachloroethene (PCE)	127-18-4	165.8		1.4
Toluene	108-88-3	92.14	0.86	2.5
1,2,4-Trichlorobenzene	120-82-1	181.5	ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0.043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	0.72	1.2
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4		0.55 J
Trichlorofluoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8		ND (0.12)	ND (0.89)
2,2,4-Trimethylpentane	540-84-1	114.2	0,21	1
Vinyl chloride	75-01-4	62.5	ND (0.027)	ND (0.13)
Xylenes (m&p)	1330-20-7	106.2	0.2	0.93
Xylenes (o)	95-47-6		ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12	ND (0.057)	ND (0.17)
Ethanol	64-17-5	46.07	0.63	2.4
Ethyl Acetate	141-78-6	88	ND (0.024)	ND (0.13)
2-Hexanone	591-78-6	100	0.3	1.7
Isopropyl Alcohol	67-63-0	60.1	ND (0.029)	ND (0.074)
Propylene	115-07-1	42	ND (0.13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11	0,43	1.9
Vinyl Acetate	108-05-4	86	0.16 J	0,69 J
Xylenes (total)	1330-20-7	106.2	0.59	2.6

Sample - A2 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	3.3	7.8
Benzene	71-43-2	78.11	ND (0.028)	ND (0.062)
Bromodichloromethane	75-27-4	163.8	0.36	1.2
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0.025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane	75-00-3	64.52		ND (0.13)
Chloroform	67-66-3	119.4	0.6	1.2
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0.035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1		ND (0.032)	ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	0.10 J	0.63 J
Cyclohexane	110-82-7	84.16	ND (0.042)	ND (0.14)
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane	75-71-8		ND (0.040)	ND (0.14)
1,1-Dichloroethane	75-34-3	98.96	0,54	2.7
1,2-Dichloroethane	107-06-2	98.96	ND (0.082)	ND (0.70)
1,1-Dichloroethene	75-35-4	96.94	ND (0.035)	ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	ND (0.031)	ND (0.12)
1,2-Dichloroethene (trans)	156-60-5	96.94	ND (0.022)	ND (0.10)
1,2-Dichloropropane	78-87-5	113	ND (0.025)	ND (0.15)

Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114	76-14-2		ND (0.079)	ND (0,36)
Ethylbenzene 4-Ethyltoluene (p-Ethyltoluene)	100-41-4 622-96-8	106.2 120.2		8.5 0.56 J
4-Ethylloluerie (p-Ethylloluerie)	022-30-6	120.2	0, 10 0	0.000
n-Heptane	142-82-5	100.2	ND (0.077)	ND (0.28)
Hexachlorobutadiene	87-68-3	260.8	ND (0.024)	ND (0.12)
n-Hexane	110-54-3	86.17	ND (0.026)	ND (0.20)
Methylene chloride	75-09-2	84.94	ND (0.029)	ND (0.20)
4-Methyl-2-pentanone (MIBK)	108-10-1	100.2		0,86
MTBE (Methyl tert-butyl ether)	1634-04-4	00 15	ND (0.060)	ND (0.64)
Styrene	100-42-5	104.1	0.27	0.95
			Contraction of the Contraction o	Miles Committee
Tertiary butyl alcohol (TBA)	75-65-0		ND (0.043)	ND (0.18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9		1.2
Tetrachloroethene (PCE)	127-18-4	165.8	ACCOMPANIES COMPANIES CONTRACTOR CONTRACTOR	1.1
Toluene	108-88-3	92.14	1.7	5
1,2,4-Trichlorobenzene	120-82-1	181.5	ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0.043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	ND (0.096)	ND (0.16)
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4	ND (0,024)	ND (0.13)
Trichlorofluoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8	120.2		ND (0.89)
2,2,4-Trimethylpentane	540-84-1	114.2	0.26	1.3
March abbertal	75.04.	00 5	ND (0.007)	ND (0.40)
Vinyl chloride	75-01-4	62.5 106.2	ND (0.027) 0.86	ND (0.13) 4
Xylenes (m&p)	1330-20-7	100.2	0.00	4
Xylenes (o)	95-47-6	106.2	ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12		0,38 J
Ethanol	64-17-5	46.07	0.65	2.4
Ethyl Acatata	141-78-6	88	ND (0.024)	ND (0.13)
Ethyl Acetate 2-Hexanone	591-78-6	100	0.28	1.6
			300000000000000000000000000000000000000	and transcent transcent transcent at a secretary and a
Isopropyl Alcohol	67-63-0	60.1		ND (0.074)
Propylene	115-07-1	42	ND (0.13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11	0,54	2,3
Vinyl Acetate	108-05-4	86	0.17 J	0.74 J
Xylenes (total)	1330-20-7	106.2	0,71	3,1

Chemical	CAS Number	Molecular Weight	Insert Results in ppby	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	3	7.1
Benzene	71-43-2	78.11	ND (0.028)	ND (0.062)
Bromodichloromethane	75-27-4	163.8	0.21	0.67
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0,025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane	75-00-3		ND (0.026)	ND (0.13)
Chloroform	67-66-3	119.4	0.66	1.4
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0.035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1	76.53	ND (0.032)	ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	ND (0.023)	ND (0.14)
Cyclohexane	110-82-7	84.16	ND (0.042)	ND (0.14)
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane 1,1-Dichloroethane	75-71-8 75-34-3	120.9 98.96	ND (0.040) 0.56	ND (0.14) 2.8
1,2-Dichloroethane	107-06-2	98.96		ND (0.70)
1,1-Dichloroethene	75-35-4	96.94		ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	, ,	ND (0.14)
1,2-Dichloroethene (trans)	156-60-5	96.94		ND (0.12)
1,2-Dichloropropane	78-87-5		ND (0.025)	ND (0.15)
-1	1/00/0	. 10	(/	1 1

Chemical	CAS Number	Molecular Weight	Insert Results in ppby	Generates Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114 Ethylbenzene	76-14-2 100-41-4	170.9 106.2	ND (0.079) 4.1	ND (0.36)
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.2	ND (0.027)	ND (0.12)
n-Heptane	142-82-5	100.2	ND (0.077)	ND (0.28)
Hexachlorobutadiene	87-68-3	260.8	ND (0.024)	ND (0.12)
n-Hexane	110-54-3	86.17	ND (0.026)	ND (0.20)
Methylene chloride	75-09-2		ND (0.029)	ND (0.20)
4-Methyl-2-pentanone (MIBK)	108-10-1	100.2	0.17 J	0,70 J
MTBE (Methyl tert-butyl ether)	1634-04-4		ND (0.060)	ND (0.64)
Styrene	100-42-5	104.1	0.23	0.81
Tertiary butyl alcohol (TBA)	75-65-0	74.12	ND (0.043)	ND (0.18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9		0,93
Tetrachloroethene (PCE)	127-18-4	165.8	0.31	1,1
Toluene	108-88-3	92.14	0,62	1.8
1,2,4-Trichlorobenzene	120-82-1	181.5	ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0.043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	ND (0.096)	ND (0.16)
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4	ND (0.024)	ND (0.13)
Trichlorofiuoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8	120.2		ND (0.89)
2,2,4-Trimethylpentane	540-84-1	114.2	0.11 J	0.54 J
Vinyl chloride	75-01-4	62.5	ND (0.027)	ND (0.13)
Xylenes (m&p)	1330-20-7	106.2	ND (0.021)	ND (0.098)
Xylenes (o)	95-47-6	106.2	ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12	ND (0.057)	ND (0.17)
Ethanol	64-17-5	46.07	0.57	2.1
Ethyl Acetate 2-Hexanone	141-78-6 591-78-6	88 100	ND (0.024) 0.27	ND (0.13) 1.5
Isopropyl Alcohol	67-63-0	60.1	ND (0.029)	ND (0.074)
Propylene	115-07-1	42	ND (0.13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11	0.27	1,2
Vinyl Acetate Xylenes (total)	108-05-4 1330-20-7	86 106.2	ND (0.026) 0.27	ND (0.11) 1.2

Sample - A4 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	2.1	5
Benzene Bromodichloromethane	71-43-2 75-27-4	78.11 163.8	ND (0.028) 0.22	ND (0.062) 0.7
Biomodiciloromethane	75-27-4	103.0	V.24	V.1
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0.025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane Chloroform	75-00-3 67-66-3	64.52 119.4	ND (0.026) 0.62	ND (0.13)
Chiolotoini	07-00-3	119.4	0.02	1.0
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0,035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1	76.53		ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	0.10 J	0,63 J
Cyclohexane	110-82-7	84.16	ND (0.042)	ND (0.14)
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane	75-71-8	120.9	ND (0.040)	ND (0.14)
1,1-Dichloroethane	75-34-3	98.96	0,58	2.9
1,2-Dichloroethane	107-06-2	98.96	ND (0.082)	ND (0.70)
1,1-Dichloroethene	75-35-4	96.94	ND (0.035)	ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	ND (0.031)	ND (0.12)
1,2-Dichloroethene (trans)	156-60-5	96.94	ND (0.022)	ND (0.10)
1,2-Dichloropropane	78-87-5	113	ND (0.025)	ND (0.15)

9, 110			.	
Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114	76-14-2	170.9	ND (0.079)	ND (0.36)
Ethylbenzene	100-41-4	106.2	4.5	8.5
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.2	ND (0.027)	ND (0.12)
n-Heptane	142-82-5	100.2	ND (0.077)	ND (0.28)
Hexachlorobutadiene	87-68-3	260.8	ND (0.024)	ND (0.12)
n-Hexane	110-54-3	86.17	ND (0.026)	ND (0.20)
Methylene chloride	75-09-2		ND (0.029)	ND (0.20)
4-Methyl-2-pentanone (MIBK)	108-10-1	100.2	0,17 J	0.70 J
MTBE (Methyl tert-butyl ether)	1634-04-4		ND (0.060)	ND (0.64)
Styrene	100-42-5	104.1	0,25	0,88
Tertiary butyl alcohol (TBA)	75-65-0	74.12	ND (0.043)	ND (0,18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9	0,34	0,84
Tetrachloroethene (PCE)	127-18-4	165.8	0.38	1.3
Toluene	108-88-3	92.14	0,6	1.8
1,2,4-Trichlorobenzene	120-82-1	181.5	ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0.043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	ND (0.096)	ND (0.16)
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4	ND (0.024)	ND (0.13)
Trichlorofluoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8	120.2	ND (0.12)	ND (0,89)
2,2,4-Trimethylpentane	540-84-1	114,2	0.11 J	0.54 J
Vinyl chloride	75-01-4	62.5	ND (0.027)	ND (0.13)
Xylenes (m&p)	1330-20-7	106.2	ND (0.021)	ND (0.098)
Xylenes (o)	95-47-6	106.2	ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12	ND (0.057)	ND (0.17)
Ethanol	64-17-5	46.07	0,55	2,1
Ethyl Acetate	141-78-6	88	ND (0.024)	ND (0.13)
Ethyl Acetate 2-Hexanone	591-78-6	100	0.29	1.6
Isopropyl Alcohol	67-63-0	60.1	ND (0.029)	ND (0.074)
Propylene	115-07-1	42	ND (0.13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11	0.26	1.1
Vinyl Acetate	108-05-4		ND (0.026)	ND (0.11)
Xylenes (total)	1330-20-7	106.2	0.26	1.1

Sample - A5 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	5.1	12
Benzene	71-43-2	78.11	ND (0.028)	ND (0,062)
Bromodichloromethane	75-27-4	163.8	0.23	0,73
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0.025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane	75-00-3		ND (0.026)	ND (0.13)
Chloroform	67-66-3	119.4	0.66	1.4
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0.035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1	76.53	ND (0.032)	ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	ND (0.023)	ND (0.14)
Cyclohexane	110-82-7	84.16	0,12 J	0,41 J
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane	75-71-8		ND (0.040)	ND (0.14)
1,1-Dichloroethane	75-34-3	98.96	0.56	2,8
1,2-Dichloroethane	107-06-2	98.96	ND (0.082)	ND (0.70)
1,1-Dichloroethene	75-35-4	96.94	ND (0.035)	ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	ND (0.031)	ND (0.12)
1,2-Dichloroethene (trans)	156-60-5	96.94	ND (0.022)	ND (0.10)
1,2-Dichloropropane	78-87-5	113	ND (0.025)	ND (0.15)

Sample - A5 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Molecular Weight	Insert Results in ppbv	Generates Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114	76-14-2		ND (0.079)	ND (0.36)
Ethylbenzene	100-41-4	106.2	42,0 E	79.1 E
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.2	0,13 J	0.56 J
n-Heptane	142-82-5	100.2	0,37	1.3
Hexachlorobutadiene	87-68-3	260.8	ND (0.024)	ND (0.12)
n-Hexane	110-54-3	86.17	ND (0.026)	ND (0.20)
Mothylana shlarida	75.00 2	94.04	ND (0.029)	ND (0.30)
Methylene chloride	75-09-2 108-10-1	100.2		ND (0.20)
4-Methyl-2-pentanone (MIBK)	100-10-1	100.2	0.25	l l
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	ND (0,060)	ND (0.64)
Styrene	100-42-5	104.1	0.27	0.95
Tertiary butyl alcohol (TBA)	75-65-0		ND (0.043)	ND (0.18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9		45.2
Tetrachloroethene (PCE)	127-18-4	165.8		1.4
Toluene	108-88-3	92.14	1.1	3.2
1,2,4-Trichlorobenzene	120-82-1	181.5	ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0.043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	ND (0.096)	ND (0.16)
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4	ND (0.024)	ND (0,13)
Trichlorofluoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8		ND (0.12)	ND (0.89)
2,2,4-Trimethylpentane	540-84-1	114.2		0.88 J
Vinyl chloride	75-01-4		ND (0.027)	ND (0.13)
Xylenes (m&p)	1330-20-7	106.2	0.11 J	0.51 J
Xylenes (o)	95-47-6	106.2	ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12	ND (0,057)	ND (0.17)
Ethanol	64-17-5	46.07	0,88	3.3
Ethyl Acetate	141-78-6	×	ND (0.024)	ND (0.13)
2-Hexanone	591-78-6	100	0.32	1,8
Isopropyl Alcohol	67-63-0	60.1	ND (0.029)	ND (0.074)
Propylene	115-07-1	42	ND (0,13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11	0.41	1,8
Vinyl Acetate	108-05-4	86	0.15 J	0,65 J
Xylenes (total)	1330-20-7	106.2	0.56	2.4

Sample - A6 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

Chemical	CAS Number	Moiecular Weight	Insert Results in ppbv	Generates Results in ug/m3
Acetone (2-propanone)	67-64-1	58.08	6	14
Benzene	71-43-2	78.11	ND (0.028)	ND (0.062)
Bromodichloromethane	75-27-4	163.8	0.21	0.67
Bromoethene	593-60-2	106.9	ND (0.025)	ND (0.17)
Bromoform	75-25-2	252.8	ND (0.025)	ND (0.26)
Bromomethane (Methyl bromide)	74-83-9	94.94	ND (0.026)	ND (0.10)
1,3-Butadiene	106-99-0	54.09	ND (0.032)	ND (0.14)
2-Butanone (Methyl ethyl ketone)	78-93-3	72.11	ND (0.034)	ND (0.18)
Carbon disulfide	75-15-0	76.14	ND (0.029)	ND (0.090)
Carbon tetrachloride	56-23-5	153.8	ND (0.031)	ND (0.14)
Chlorobenzene	108-90-7	112.6	ND (0.050)	ND (0.13)
Chloroethane	75-00-3		ND (0.026)	ND (0.13)
Chloroform	67-66-3	119.4	0.67	1.4
Chloromethane (Methyl chloride)	74-87-3	50.49	ND (0.035)	ND (0.11)
3-Chloropropene (allyl chloride)	107-05-1		ND (0.032)	ND (0.17)
2-Chlorotoluene (o-Chlorotoluene)	95-49-8	126.6	0.097 J	0.61 J
Cyclohexane	110-82-7	84.16	ND (0.042)	ND (0.14)
Dibromochloromethane	124-48-1	208.3	ND (0.025)	ND (0.10)
1,2-Dibromoethane	106-93-4	187.9	ND (0.024)	ND (0.095)
1,2-Dichlorobenzene	95-50-1	147	ND (0.030)	ND (0.23)
1,3-Dichlorobenzene	541-73-1	147	ND (0.024)	ND (0.097)
1,4-Dichlorobenzene	106-46-7	147	ND (0.054)	ND (0.25)
Dichlorodifluoromethane	75-71-8		ND (0.040)	ND (0.14)
1,1-Dichloroethane	75-34-3	98.96	0,6	3
1,2-Dichloroethane	107-06-2	98.96	ND (0.082)	ND (0.70)
1,1-Dichloroethene	75-35-4	96.94	ND (0.035)	ND (0.14)
1,2-Dichloroethene (cis)	156-59-2	96.94	ND (0.031)	ND (0.12)
1,2-Dichloroethene (trans)	156-60-5	96.94	ND (0.022)	ND (0.10)
1,2-Dichloropropane	78-87-5	113	ND (0.025)	ND (0.15)

Sample - A6 Conversion Table Hess - Port Reading Refinery Administration Building 750 Cliff Road Port Reading, NJ

a		Molecular	Insert	Generates
Chemical	CAS Number	Weight	Results in ppby	Results in ug/m3
cis-1,3-Dichloropropene	10061-01-5	111	ND (0.032)	ND (0.19)
trans-1,3-Dichloropropene	10061-02-6	111	ND (0.027)	ND (0.16)
1,2-Dichlorotetrafluoroethane (Freon 114 Ethylbenzene	76-14-2 100-41-4	170.9 106.2	ND (0.079) 52.0 E	ND (0.36) 98.0 E
4-Ethyltoluene (p-Ethyltoluene)	622-96-8	120.2		0,48 J
n-Heptane Hexachlorobutadiene	142-82-5 87-68-3	100.2	0.51 ND (0.024)	1.8 ND (0.12)
n-Hexane	110-54-3		ND (0.024)	ND (0.12) ND (0.20)
m-nexalle	110-54-5	QU, 17	ND (0.020)	ND (0.20)
Methylene chloride	75-09-2	84 94	ND (0.029)	ND (0.20)
4-Methyl-2-pentanone (MIBK)	108-10-1	100.2		1
- many a pontantino dinory		10012	ORGANIZATION CONTRACTOR	
MTBE (Methyl tert-butyl ether)	1634-04-4	88.15	ND (0.060)	ND (0.64)
Styrene	100-42-5	104.1		0.88
Tertiary butyl alcohol (TBA)	75-65-0	74 19	ND (0.043)	ND (0.18)
1,1,2,2-Tetrachloroethane	79-34-5	167.9		110 E
Tetrachloroethene (PCE)	127-18-4	165.8		1.3
Toluene	108-88-3	92.14		2.6
1,2,4-Trichlorobenzene	120-82-1		ND (0.037)	ND (0.15)
1,1,1-Trichloroethane	71-55-6	133.4	ND (0,043)	ND (0.16)
1,1,2-Trichloroethane	79-00-5	133.4	ND (0.096)	ND (0.16)
1,1,2-Trichloro-1,2,2-trifluoroethane (F	76-13-1	187.4	ND (0.027)	ND (0.11)
Trichloroethene (TCE)	79-01-6	131.4	ND (0.024)	ND (0.13)
Trichlorofluoromethane (Freon 11)	75-69-4	137.4	ND (0.025)	ND (0.17)
1,2,4-Trimethylbenzene	95-63-6	120.2	ND (0.024)	ND (0.13)
1,3,5-Trimethylbenzene	108-67-8	120.2	ND (0.12)	ND (0.89)
2,2,4-Trimethylpentane	540-84-1	114.2	0.15 J	0.74 J
Vinyl chloride	75-01-4		ND (0.027)	ND (0.13)
Xylenes (m&p)	1330-20-7	106.2	0.11 J	0.51 J
Xylenes (o)	95-47-6	106.2	ND (0.039)	ND (0.12)
Benzyl Chloride	100-44-7	126	ND (0.040)	ND (0.27)
1,4-Dioxane	123-91-1	88.12	ND (0.057)	ND (0.17)
Ethanol	64-17-5	46.07	0.81	3.1
Ethyl Acetate	141-78-6	88	ND (0.024)	ND (0.13)
2-Hexanone	591-78-6	100	0.31	1,7
Isopropyl Alcohol	67-63-0	60.1	ND (0.029)	ND (0.074)
Propylene Tatrahydrofuran	115-07-1	72 11	ND (0.13)	ND (0.46)
Tetrahydrofuran	109-99-9	72.11 86	0.36 0.12 J	1.6 0.52 J
Vinyl Acetate Xylenes (total)			Andrew Comment of the Parket Street	Antomorphic Commence (Commence Commence
[Aylonds (total)	1330-20-7	106.2	0.48	2.1